I am interested in computing the derivative of a matrix determinant using TensorFlow. I can see from experimentation that TensorFlow has not implemented a method of differentiating through a determinant:
LookupError: No gradient defined for operation 'MatrixDeterminant'
(op type: MatrixDeterminant)
A little further investigation revealed that it is actually possible to compute the derivative; see for example Jacobi's formula. I determined that in order to implement this means of differentiating through a determinant that I need to use the function decorator,
@tf.RegisterGradient("MatrixDeterminant")
def _sub_grad(op, grad):
...
However, I am not familiar enough with tensor flow to understand how this can be accomplished. Does anyone have any insight on this matter?
Here's an example where I run into this issue:
x = tf.Variable(tf.ones(shape=[1]))
y = tf.Variable(tf.ones(shape=[1]))
A = tf.reshape(
tf.pack([tf.sin(x), tf.zeros([1, ]), tf.zeros([1, ]), tf.cos(y)]), (2,2)
)
loss = tf.square(tf.matrix_determinant(A))
optimizer = tf.train.GradientDescentOptimizer(0.001)
train = optimizer.minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for step in xrange(100):
sess.run(train)
print sess.run(x)
Please check "Implement Gradient in Python" section here
In particular, you can implement it as follows
@ops.RegisterGradient("MatrixDeterminant")
def _MatrixDeterminantGrad(op, grad):
"""Gradient for MatrixDeterminant. Use formula from 2.2.4 from
An extended collection of matrix derivative results for forward and reverse
mode algorithmic differentiation by Mike Giles
-- http://eprints.maths.ox.ac.uk/1079/1/NA-08-01.pdf
"""
A = op.inputs[0]
C = op.outputs[0]
Ainv = tf.matrix_inverse(A)
return grad*C*tf.transpose(Ainv)
Then a simple training loop to check that it works:
a0 = np.array([[1,2],[3,4]]).astype(np.float32)
a = tf.Variable(a0)
b = tf.square(tf.matrix_determinant(a))
init_op = tf.initialize_all_variables()
sess = tf.InteractiveSession()
init_op.run()
minimization_steps = 50
learning_rate = 0.001
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(b)
losses = []
for i in range(minimization_steps):
train_op.run()
losses.append(b.eval())
Then you can visualize your loss over time
import matplotlib.pyplot as plt
plt.ylabel("Determinant Squared")
plt.xlabel("Iterations")
plt.plot(losses)