I have been trying to detect word/bigram trends over pieces of text. What I have done so far is removing stop words, lowercasing and getting word frequencies and appended the top common 30 per text to a list,
e.g.
[(u'seeing', 2), (u'said.', 2), (u'one', 2), (u'death', 2), (u'entertainment', 2), (u'it\u2019s', 2), (u'weiss', 2), (u'read', 2), (u'\u201cit', 1), (u'shot', 1), (u'show\u2019s', 1), (u'people', 1), (u'dead,\u201d', 1), (u'bloody', 1),...]
Then I converted the lists above to one huge list containing all words and their per doc frequencies and what I need to do now is get back a sorted list, i.e.:
[(u'snow', 32), (u'said.', 12), (u'GoT', 10), (u'death', 8), (u'entertainment', 4)..]
Any ideas?
Code:
fdists = []
for i in texts:
words = FreqDist(w.lower() for w in i.split() if w.lower() not in stopwords)
fdists.append(words.most_common(30))
all_in_one = [item for sublist in fdists for item in sublist]
if all you want to do is sort your list you can use
import operator
fdists = [(u'seeing', 2), (u'said.', 2), (u'one', 2), (u'death', 2), (u'entertainment', 2), (u'it\u2019s', 2), (u'weiss', 2), (u'read', 2), (u'\u201cit', 1), (u'shot', 1), (u'show\u2019s', 1), (u'people', 1), (u'dead,\u201d', 1), (u'bloody', 1)]
fdists2 = [(u'seeing', 3), (u'said.', 4), (u'one', 2), (u'death', 2), (u'entertainment', 2), (u'it\u2019s', 2), (u'weiss', 2), (u'read', 2)]
fdists += fdists2
fdict = {}
for i in fdists:
if i[0] in fdict:
fdict[i[0]] += i[1]
else:
fdict[i[0]] = i[1]
sorted_f = sorted(fdict.items(), key=operator.itemgetter(1), reverse=True)
print sorted_f[:30]
[(u'said.', 6), (u'seeing', 5), (u'death', 4), (u'entertainment', 4), (u'read', 4), (u'it\u2019s', 4), (u'weiss', 4), (u'one', 4), (u'\u201cit', 1), (u'shot', 1), (u'show\u2019s', 1), (u'people', 1), (u'dead,\u201d', 1), (u'bloody', 1)]
Another way you can handle duplicates is to use pandas groupby()
function and then use the sort()
function to sort by count
and word
like so
from pandas import *
import pandas as pd
fdists = [(u'seeing', 2), (u'said.', 2), (u'one', 2), (u'death', 2), (u'entertainment', 2), (u'it\u2019s', 2), (u'weiss', 2), (u'read', 2), (u'\u201cit', 1), (u'shot', 1), (u'show\u2019s', 1), (u'people', 1), (u'dead,\u201d', 1), (u'bloody', 1)]
fdists2 = [(u'seeing', 3), (u'said.', 4), (u'one', 2), (u'death', 2), (u'entertainment', 2), (u'it\u2019s', 2), (u'weiss', 2), (u'read', 2)]
fdists += fdists2
df = DataFrame(data = fdists, columns = ['word','count'])
df= DataFrame([{'word': k, 'count': (v['count'].sum())} for k,v in df.groupby(['word'])], columns = ['word','count'])
Sorted = df.sort(['count','word'], ascending = [0,1])
print Sorted[:30]
word count
8 said. 6
9 seeing 5
2 death 4
3 entertainment 4
4 it’s 4
5 one 4
7 read 4
12 weiss 4
0 bloody 1
1 dead,” 1
6 people 1
10 shot 1
11 show’s 1
13 “it 1