I have an igraph object mygraph
with ~10,000 nodes and ~145,000 edges, and I need to create a number of subgraphs from this graph but with different sizes.
What I need is to create subgraphs from a determined size (from 5 nodes to 500 nodes) where all the nodes are connected in each subgraph. I need to create ~1,000 subgraphs for each size (i.e, 1000 subgraphs for size5, 1000 for size 6, and so on), and then calculate some values for each graph according to different node attributes.
I have some code but it takes a long time to do all the calculations. I thought in using the graphlets
function in order to get the different sizes but every time I run it on my computer it crash due to memory issues.
Here is the code I am using:
First step was to create a function to create the subgraphs of different sizes and do the calculations needed.
random_network<-function(size,G){
score_fun<-function(g){
subsum <- sum(V(g)$weight*V(g)$RWRNodeweight)/sqrt(sum(V(g)$RWRNodeweight^2))
subsum
}
genes.idx <- V(G)$name
perm <- c()
while(length(perm)<1000){
seed<-sample(genes.idx,1)
while( length(seed)<size ){
tmp.neigh <- V(G)[unlist(neighborhood(G,1,seed))]$name
tmp.neigh <- setdiff(tmp.neigh, seed)
if( length(tmp.neigh)>0 )
seed<-c(seed,sample(tmp.neigh,1)) else break
}
if( length(seed)==size )
perm <- c(perm,score_fun(induced.subgraph(G,seed)))
}
perm
}
Second step was to apply the function to the actual graph
### generate some example data
library(igraph)
my_graph <- erdos.renyi.game(10000, 0.0003)
V(my_graph)$name <- 1:vcount(my_graph)
V(my_graph)$weight <- rnorm(10000)
V(my_graph)$RWRNodeweight <- runif(10000, min=0, max=0.05)
### Run the code to get the subgraphs from different size and do calculations based on nodes
genesets.length<- seq(5:500)
genesets.length.null.dis <- list()
for(k in 5:max(genesets.length){
genesets.length.null.dis[[as.character(k)]] <- random_network(size=k,G=my_graph)
}
One approach to speed up your code further than what's possible in base R would be to use the Rcpp package. Consider the following Rcpp implementation of the full operation. It takes as input the following:
valid
: The indices of all nodes that are in a large-enough componentel
, deg
, firstPos
: A representation of the graph's edge list (node i
's neighbors are el[firstPos[i]]
, el[firstPos[i]+1]
, ..., el[firstPos[i]+deg[i]-1]
).size
: The subgraph size to samplenrep
: The number of repetitionsweights
: The edge weights stored in V(G)$weight
RWRNodeweight
: The edge weights stored in V(G)$RWRNodeweight
library(Rcpp)
cppFunction(
"NumericVector scores(IntegerVector valid, IntegerVector el, IntegerVector deg,
IntegerVector firstPos, const int size, const int nrep,
NumericVector weights, NumericVector RWRNodeweight) {
const int n = deg.size();
std::vector<bool> used(n, false);
std::vector<bool> neigh(n, false);
std::vector<int> neighList;
std::vector<double> scores(nrep);
for (int outerIter=0; outerIter < nrep; ++outerIter) {
// Initialize variables
std::fill(used.begin(), used.end(), false);
std::fill(neigh.begin(), neigh.end(), false);
neighList.clear();
// Random first node
int recent = valid[rand() % valid.size()];
used[recent] = true;
double wrSum = weights[recent] * RWRNodeweight[recent];
double rrSum = RWRNodeweight[recent] * RWRNodeweight[recent];
// Each additional node
for (int idx=1; idx < size; ++idx) {
// Add neighbors of recent
for (int p=firstPos[recent]; p < firstPos[recent] + deg[recent]; ++p) {
if (!neigh[el[p]] && !used[el[p]]) {
neigh[el[p]] = true;
neighList.push_back(el[p]);
}
}
// Compute new node to add from all neighbors
int newPos = rand() % neighList.size();
recent = neighList[newPos];
used[recent] = true;
wrSum += weights[recent] * RWRNodeweight[recent];
rrSum += RWRNodeweight[recent] * RWRNodeweight[recent];
// Remove from neighList
neighList[newPos] = neighList[neighList.size() - 1];
neighList.pop_back();
}
// Compute score from wrSum and rrSum
scores[outerIter] = wrSum / sqrt(rrSum);
}
return NumericVector(scores.begin(), scores.end());
}
")
Now all that we need to do in base R is generate the arguments for scores
, which can be done pretty easily:
josilber.rcpp <- function(size, num.rep, G) {
n <- length(V(G)$name)
# Determine which nodes fall in sufficiently large connected components
comp <- components(G)
valid <- which(comp$csize[comp$membership] >= size)
# Construct an edge list representation for use in the Rcpp code
el <- get.edgelist(G, names=FALSE) - 1
el <- rbind(el, el[,2:1])
el <- el[order(el[,1]),]
deg <- degree(G)
first.pos <- c(0, cumsum(head(deg, -1)))
# Run the proper number of replications
scores(valid-1, el[,2], deg, first.pos, size, num.rep,
as.numeric(V(G)$weight), as.numeric(V(G)$RWRNodeweight))
}
The time to perform 1000 replications is blazing fast compared to the original code and all igraph
solutions we've seen so far (note that for much of this benchmarking I tested the original josilber
and random_network
functions for 1 replication instead of 1000 because testing for 1000 would take a prohibitively long time):
josilber
function and a 4000x speedup over the original random_network
function)josilber
function and a 162000x speedup over the original random_network
function)josilber
function and a 20.4 million times speedup over the original random_network
function)josilber
function and a 290 million times speedup over the original random_network
function)In short, Rcpp probably makes it feasible to compute 1000 replicates for each size from 5 to 500 (this operation will probably take about 1 minute in total), while it would be prohibitively slow to compute the 1000 replicates for each of these sizes using the pure R code that's been proposed so far.