I know how to execute a parallel loop in joblib
that returns a list as result.
However, is it possible to fill a predefined numpy
matrix in parallel?
Imagine the following minimal example matrix and data:
column_data = ['a', 'b', 'c', 'd', 'e', 'f', 'x']
data = [['a', 'b', 'c'],
['d', 'c'],
['e', 'f', 'd', 'x']]
x = np.zeros((len(data), len(column_data))
Note that column_data
is sorted and unique. data
is a list of lists, not a rectangular matrix.
The loop:
for row in range(len(data)):
for column in data[row]:
x[row][column_data.index(column)] = 1
It is possible to parallellise this loop? Filling in a 70,000 x 10,000
matrix is quite slow without parallellisation.
Here's an almost vectorized approach -
lens = [len(item) for item in data]
A = np.concatenate((column_data,np.concatenate(data)))
_,idx = np.unique(A,return_inverse=True)
R = np.repeat(np.arange(len(lens)),lens)
C = idx[len(column_data):]
out = np.zeros((len(data), len(column_data)))
out[R,C] = 1
Here's another -
lens = [len(item) for item in data]
R = np.repeat(np.arange(len(lens)),lens)
C = np.searchsorted(column_data,np.concatenate(data))
out = np.zeros((len(data), len(column_data)))
out[R,C] = 1