import numpy as np
import matplotlib.pyplot as plt
from lmfit import minimize, Parameters, Parameter, report_fit
# create data to be fitted
x = np.linspace(0, 15, 301)
data = (5. * np.sin(2 * x - 0.1) * np.exp(-x*x*0.025) +
np.random.normal(size=len(x), scale=0.2) )
# define objective function: returns the array to be minimized
def fcn2min(params, x, data):
""" model decaying sine wave, subtract data"""
amp = params['amp'].value
shift = params['shift'].value
omega = params['omega'].value
decay = params['decay'].value
model = amp * np.sin(x * omega + shift) * np.exp(-x*x*decay)
return model - data
# create a set of Parameters
params = Parameters()
params.add('amp', value= 10, min=0)
params.add('decay', value= 0.1)
params.add('shift', value= 0.0, min=-np.pi/2., max=np.pi/2)
params.add('omega', value= 5.0)
# do fit, here with leastsq model
result = minimize(fcn2min, params, args=(x, data))
# calculate final result
final = data + result.residual
# try to plot results
plt.plot(x,data,'k+')
plt.plot(x,final,'r')
plt.show()
In this code, I want to call the parameters like 'amp', 'shift' in the python. Print(amp).. kinds of things How to call these parameters in the python after fitting? When I use print(amp), the error message is shown; name 'amp' is not defined. How to print these fitted parameters using print function? (etc. print(amp))
You are likely trying to print that data outside of the function. The amp
, shift
, omega
and decay
variables are in fc2min
's local scope and are therefore only accessible inside the function. Your data analysis skills seem to far outmatch your Python know-how, so I added some helpful tips inside this code:
import numpy as np
import matplotlib.pyplot as plt
from lmfit import minimize, Parameters, Parameter, report_fit
# create data to be fitted
x = np.linspace(0, 15, 301)
data = (5. * np.sin(2 * x - 0.1) * np.exp(-x*x*0.025) +
np.random.normal(size=len(x), scale=0.2) )
# define objective function: returns the array to be minimized
def fcn2min(params, x, data):
""" model decaying sine wave, subtract data"""
amp = params['amp'].value
shift = params['shift'].value
omega = params['omega'].value
decay = params['decay'].value
model = amp * np.sin(x * omega + shift) * np.exp(-x*x*decay)
# tell Python we're modifying the model_data list
# that was declared outside of this function
global model_data
# store the model data produced by this function call
# add any data you want to display later to this "dictionary"
model_data += [{
"amp": amp,
"shift": shift,
"omega": omega,
"decay": decay
}]
return model - data
# create a set of Parameters
params = Parameters()
params.add('amp', value= 10, min=0)
params.add('decay', value= 0.1)
params.add('shift', value= 0.0, min=-np.pi/2., max=np.pi/2)
params.add('omega', value= 5.0)
# declare an empty list to hold the model data
model_data = []
# do fit, here with leastsq model
result = minimize(fcn2min, params, args=(x, data))
# print each item in the model data list
for datum in model_data:
for key in datum:
#the 5 in %.5f controls the precision of the floating point value
print("%s: %.5f ") % (key, datum[key]),
print
# calculate final result
final = data + result.residual
# try to plot results
plt.plot(x,data,'k+')
plt.plot(x,final,'r')
plt.show()