Here is the code for the implementation of the Binary Search Tree:
public class BST<T extends Comparable<T>> {
BSTNode<T> root;
public T search(T target)
{
//loop to go through nodes and determine which routes to make
BSTNode<T> tmp = root;
while(tmp != null)
{
//c can have 3 values
//0 = target found
//(negative) = go left, target is smaller
//(positive) = go left, target is greater than current position
int c = target.compareTo(tmp.data);
if(c==0)
{
return tmp.data;
}
else if(c<0)
{
tmp = tmp.left;
}
else
{
tmp = tmp.right;
}
}
return null;
}
/*
* Need a helper method
*/
public T recSearch(T target)
{
return recSearch(target, root);
}
//helper method for recSearch()
private T recSearch(T target, BSTNode<T> root)
{
//Base case
if(root == null)
return null;
int c = target.compareTo(root.data);
if(c == 0)
return root.data;
else if(c<0)
return recSearch(target, root.left);
else
return recSearch(target, root.right);
}
Why do I need the recursive helper method? Why can't I I just use "this.root" to carry out the recursive process that is taking place? Furthermore, if screwing up the root property of the object this method is being called on is a problem, then how is does the helper method prevent this from happening? Does it just create a pointer that is separate from the this.root property, and therefore won't mess up the root property of the object that the method is being called on?
Sorry if the question doesn't seem straight forward, but if anyone can enlighten me on what's exactly going on behind the scenes I would really appreciate it.
The method needs a starting point. It needs to have a non changing Target node and it needs to compare it with some other node to see if they are a match lets call this node current
instead of root
since it is the current Node the recursive method is evaluating. There really isn't a concise way of doing this when using a recursive method other than using a helper function and passing in both variables (this is the case for many recursive methods). As you said stated if you updated root you would completely alter your tree when going left or right which you wouldn't want to do. The helper function is used because it gives your recursive method a starting point. And it also keeps track of the current
node you are working on as you said the method points to the Node object being evaluated but doesn't make any changes. When going left or right it doesn't modify anything it just passes in a reference to the left or right node and continues to do this until the target is found or the base case is hit.