The essential question is are alias templates supported by the CUDA compiler?
I am using CUDA 7.5 on Ubuntu with gcc-4.8. All of my template classes are defined in header files and #include
d into a single translation unit during compilation.
I have a simple cuda_array
class that provides a thin wrapper around a std::vector
. It's essentially a very simple version of thrust::host_vector
combined with a thrust::device_vector
. Its declaration is
template <typename T, const size_t N>
class cuda_array {
std::vector<T> host;
T *device;
public:
// lots of type aliases to meet container requirements
void push() { /* cudaMemcpy(...,H2D); */ }
void pull() { /* cudaMemcpy(...,D2H); */ }
// a few others that aren't relevant here
};
To make a matrix, I just made a quick template alias.
template <typename T, const size_t M, const size_t N>
using cuda_matrix = cuda_array<T, M * N>;
I want to map my matrix-vector multiplication CUDA kernel onto the overloaded operator*
for type safety and easy use (it is left to the caller to ensure that push
and pull
are called correctly).
template <typename T, const size_t rows, const size_t cols>
__global__ void matrix_vector_mul(T *A, T *b, T *result) {
__shared__ T shared_b[cols];
// rest of it
}
template <typename T, const size_t M, const size_t N>
__host__ cuda_array<T, M> operator*(cuda_matrix<T, M, N> &m, cuda_array<T, N> &v) {
cuda_array<T, M> result;
matrix_vector_mul<T, M, N><<<16, 32>>>(m.device_data(), v.device_data(), result.device_data());
return result;
}
In my 'main.cpp', I then have
cuda_matrix<int,16,32> A;
cuda_array<int,32> b;
auto result = A * b;
The last line throws an error saying
error: no operator "*" matches these operands
operand types are: cuda_matrix<int, 16UL, 32UL> * cuda_array<int, 32UL>
I chased down all of the usual suspects for template type deduction errors I could think of, but nothing worked. In desperation, I converted my cuda_matrix
alias template into a template class.
template <typename T, const size_t M, const size_t N>
class cuda_matrix : public cuda_array<T, M * N> {};
And the compile error disappears! It therefore seems that CUDA does not yet support alias templates. Or did I do something silly that I can't figure out?
You must remember that:
§ 14.5.7 [temp.alias]/p2:
When a template-id refers to the specialization of an alias template, it is equivalent to the associated type obtained by substitution of its template-arguments for the template-parameters in the type-id of the alias template. [ Note: An alias template name is never deduced. — end note ]
This means that deduction is not performed for:
template <typename T, const size_t M, const size_t N>
__host__ cuda_array<T, M> operator*(cuda_matrix<T, M, N> &m, cuda_array<T, N> &v)
but for:
template <typename T, const size_t M, const size_t N>
__host__ cuda_array<T, M> operator*(cuda_array<T, M * N> &m, cuda_array<T, N> &v)
// ~~~~~~~~~~~~~~~~~~~^
And so:
§ 14.8.2.5 [temp.deduct.type]/p16:
If, in the declaration of a function template with a non-type template parameter, the non-type template parameter is used in a subexpression in the function parameter list, the expression is a non-deduced context as specified above.
M
is in a non-deducible context, hence this operator*
is not considered as a viable overload.
As one of the workarounds, you can instead verify the deduced value for cuda_array
itself:
template <typename T, std::size_t MN, std::size_t N>
auto operator*(const cuda_array<T, MN>& m, const cuda_array<T, N>& v)
-> typename std::enable_if<(MN/N)*N==MN, cuda_array<T, MN/N>>::type;
or use the inheritance trick that you already have; then M
and N
are separate non-type template parameters of cuda_matrix
.