I have seen a lot of documentation about Isabelle's syntax and proof strategies. However, little have I found about its foundations. I have a few questions that I would be very grateful if someone could take the time to answer:
Why doesn't Isabelle/HOL admit functions that do not terminate? Many other languages such as Haskell do admit non-terminating functions.
What symbols are part of Isabelle's meta-language? I read that there are symbols in the meta-language for Universal Quantification (/\
) and for implication (==>
). However, these symbols have their counterpart in the object-level language (∀ and -->
). I understand that -->
is an object-level function of type bool => bool => bool
. However, how are ∀ and ∃ defined? Are they object-level Boolean functions? If so, they are not computable (considering infinite domains). I noticed that I am able to write Boolean functions in therms of ∀ and ∃, but they are not computable. So what are ∀ and ∃? Are they part of the object-level? If so, how are they defined?
Are Isabelle theorems just Boolean expressions? Then Booleans are part of the meta-language?
As far as I know, Isabelle is a strict programming language. How can I use infinite objects? Let's say, infinite lists. Is it possible in Isabelle/HOL?
Sorry if these questions are very basic. I do not seem to find a good tutorial on Isabelle's meta-theory. I would love if someone could recommend me a good tutorial on these topics.
Thank you very much.
psimps
rules, which replace the simps
rules of a normal function), you have to show that the function terminates on that particular input first.In general, things like non-definedness and non-termination are always problematic in a logic – consider, for instance, the function ‘definition’ f x = f x + 1
. If we were to take this as an equation on ℤ (integers), we could subtract f x
from both sides and get 0 = 1
. In Haskell, this problem is ‘solved’ by saying that this is not an equation on ℤ, but rather on ℤ ∪ {⊥} (the integers plus bottom) and the non-terminating function f
evaluates to ⊥, and ‘⊥ + 1 = ⊥’, so everything works out fine.
However, if every single expression in your logic could potentially evaluate to ⊥ instead of a ‘proper‘ value, reasoning in this logic will become very tedious. This is why Isabelle/HOL chooses to restrict itself to total functions; things like partiality have to be emulated with things like undefined
(which is an arbitrary value that you know nothing about) or option types.
⋀
(the universal meta quantifier)⟹
(meta implication)≡
(meta equality)&&&
(meta conjunction, defined in terms of ⟹
)Pure.term
, Pure.prop
, Pure.type
, Pure.dummy_pattern
, Pure.sort_constraint
, which fulfil certain internal functions that I don't know much about.You can find some information on this in the Isabelle/Isar Reference Manual in section 2.1, and probably more elsewhere in the manual.
Everything else (that includes ∀ and ∃, which indeed operate on boolean expressions) is defined in the object logic (HOL, usually). You can find the definitions, of rather the axiomatisations, in ~~/src/HOL/HOL.thy
(where ~~
denotes the Isabelle root directory):
All_def: "All P ≡ (P = (λx. True))"
Ex_def: "Ex P ≡ ∀Q. (∀x. P x ⟶ Q) ⟶ Q"
Also note that many, if not most Isabelle functions are typically not computable. Isabelle is not a programming language, although it does have a code generator that allows exporting Isabelle functions as code to programming languages as long as you can give code equations for all the functions involved.
3)
Isabelle theorems are a complex datatype (cf. ~~/src/Pure/thm.ML
) containing a lot of information, but the most important part, of course, is the proposition. A proposition is something from Isabelle/Pure, which in fact only has propositions and functions. (and itself
and dummy
, but you can ignore those).
Propositions are not booleans – in fact, there isn't even a way to state that a proposition does not hold in Isabelle/Pure.
HOL then defines (or rather axiomatises) booleans and also axiomatises a coercion from booleans to propositions: Trueprop :: bool ⇒ prop
codata
)Isabelle is a theorem prover, and logically, infinite objects can be treated by axiomatising them and then reasoning about them using the axioms and rules that you have.
For instance, HOL assumes the existence of an infinite type and defines the natural numbers on that. That already gives you access to functions nat ⇒ 'a
, which are essentially infinite lists.
You can also define infinite lists and other infinite data structures as codatatypes with the (co-)datatype package, which is based on bounded natural functors.