Consider the following code:
#include <boost/iterator/iterator_facade.hpp>
#include <map>
// Class implements an stl compliant iterator to access the "sections" stored within a configuration.
template < typename _Iterator, typename _Reference >
class Section
: public boost::iterator_facade<
Section< _Iterator, _Reference >,
_Iterator,
boost::random_access_traversal_tag,
_Reference
>
{
private:
// Define the type of the base class:
typedef boost::iterator_facade<
Section< _Iterator, _Reference >,
_Iterator,
boost::random_access_traversal_tag,
_Reference
> base_type;
public:
// The following type definitions are common public typedefs:
typedef Section< _Iterator, _Reference > this_type;
typedef typename base_type::difference_type difference_type;
typedef typename base_type::reference reference;
typedef _Iterator iterator_type;
public:
explicit Section( const iterator_type it )
: m_it( it )
{ }
// Copy constructor required to construct a const_iterator from an iterator:
template < typename _U >
Section( const Section< _U, _Reference > it )
: m_it( it.m_it )
{ }
private:
// The following classes are friend of this class to ensure access onto the private member:
friend class boost::iterator_core_access;
template < typename _Iterator, typename _Reference > friend class Section;
void increment( ){ ++m_it; } // Advance by one position.
void decrement( ){ --m_it; } // Retreat by one position.
void advance( const difference_type& n ){ m_it += n }; // Advance by n positions.
bool equal( const this_type& rhs ) const{ return m_it == rhs.m_it; } // Compare for equality with rhs.
reference dereference( ) const { return m_it->second; } // Access the value referred to.
difference_type distance_to( const this_type& rhs ) const{ return rhs.m_it - m_it; } // Measure the distance to rhs.
private:
// Current "section" iterator:
iterator_type m_it;
};
struct Data
{
void f( ) const
{ }
};
typedef std::map< int, Data > map_type;
typedef Section< const map_type::const_iterator, const Data& > iterator_type;
map_type g_map;
iterator_type begin( )
{
return iterator_type( g_map.begin( ) );
}
void main( )
{
iterator_type i = begin( );
// i->f( ); // <--- error C2039: 'f' : is not a member of 'std::_Tree_const_iterator<_Mytree>'
( *i ).f( );
}
So the iterator facade shall return a reference to Data type. This works well when dereference operator is called but compile fails when operator->() is called. So I am a bit confused because operator->() tries to return a std::map::iterator. Any ideas ?
The iterator returns an iterator on dereference. To get the f
part, you need to dereference twice.
It looks a lot like you misunderstood the meaning of the template arguments to iterator_facade
. The second argument is not supposed to be any iterator type (this is what causes all your trouble). Instead you should use it to name your value_type
.¹
From the way you specified the dereference
operation (and Ref
) and wanted to use it in main (i->f()
) it looks like you just wanted to iterate the map's values. So, I'd rewrite the whole thing using more descriptive names as well, and here it is, working:
#include <boost/iterator/iterator_facade.hpp>
#include <map>
// Class implements an stl compliant iterator to access the "sections" stored within a configuration.
template <typename Map, typename Value = typename Map::mapped_type>
class MapValueIterator : public boost::iterator_facade<MapValueIterator<Map>, Value, boost::random_access_traversal_tag, Value const&> {
private:
// Define the type of the base class:
typedef Value const& Ref;
typedef boost::iterator_facade<MapValueIterator<Map>, Value, boost::random_access_traversal_tag, Ref> base_type;
public:
// The following type definitions are common public typedefs:
typedef MapValueIterator<Map> this_type;
typedef typename base_type::difference_type difference_type;
typedef typename base_type::reference reference;
typedef typename Map::const_iterator iterator_type;
public:
explicit MapValueIterator(const iterator_type it) : m_it(it) {}
// Copy constructor required to construct a const_iterator from an iterator:
template <typename U, typename V> MapValueIterator(const MapValueIterator<U,V> it) : m_it(it.m_it) {}
private:
// The following classes are friend of this class to ensure access onto the private member:
friend class boost::iterator_core_access;
template <typename U, typename V> friend class MapValueIterator;
void increment() { std::advance(m_it); } // Advance by one position.
void decrement() { std::advance(m_it, -1); } // Retreat by one position.
void advance(const difference_type &n) { std::advance(m_it, n); } // Advance by n positions.
bool equal(const this_type &rhs) const { return m_it == rhs.m_it; } // Compare for equality with rhs.
reference dereference() const { return m_it->second; } // Access the value referred to.
difference_type distance_to(const this_type &rhs) const { return rhs.m_it - m_it; } // Measure the distance to rhs.
private:
// Current iterator:
iterator_type m_it;
};
#include <iostream>
struct Data {
void f() const {
std::cout << __PRETTY_FUNCTION__ << "\n";
}
};
typedef std::map<int, Data> map_type;
template <typename Map>
MapValueIterator<Map> map_value_iterator(Map const& m) {
return MapValueIterator<Map>(m.begin());
}
int main() {
map_type g_map;
auto i = map_value_iterator(g_map);
i->f();
}
Which prints the output
void Data::f() const
as you'd expect.
Note that there are numerous places where I implemented the member functions using standard library facilities. Note as well, the iterator "mimics" random access, but it won't have the expected performance characteristics (increment is O(n)).
Final note: I'd recommend against having the implicit conversion constructor. I think you can do without it.
¹ The reference-type should typically be the same (but ref-qualified) except in rare cases where you actually "proxy" the values. This is an advanced topic and rarely should be used.