I am having trouble implementing a more complicated form of the DerivativeStructure class provided by the Apache Commons Math Library. I wrote two programs, a trial program and then a real program. The problem I have encountered deals with my real program. I think that it is possible to work around the issue through an interface.
This post is rather long, please see the problem I have presented at the end of the post (I added extra information to pinpoint the issue at the end of the post).
The first program is straightforward and finds roots for the sin(x) function.
import java.util.TreeSet;
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math3.analysis.solvers.*;
import org.apache.commons.math3.exception.DimensionMismatchException;
public class Test5 {
public static void main(String args[]) {
NewtonRaphsonSolver test = new NewtonRaphsonSolver(1E-10);
UnivariateDifferentiableFunction f = new UnivariateDifferentiableFunction() {
public double value(double x) {
return Math.sin(x);
}
public DerivativeStructure value(DerivativeStructure t) throws
DimensionMismatchException {
return t.sin();
}
};
double EPSILON = 1e-6;
TreeSet<Double> set = new TreeSet<>();
for (int i = 1; i <= 5000; i++) {
set.add(test.solve(1000, f, i, i + EPSILON));
}
for (Double s : set) {
if (s > 0) {
System.out.println(s);
}
}
}
}
Inside this program, the DerivativeStructure class is formed through
UnivariateDifferentiableFunction f = new UnivariateDifferentiableFunction() {
public double value(double x) {
return Math.sin(x);
}
public DerivativeStructure value(DerivativeStructure t) throws
DimensionMismatchException {
return t.sin();
}
};
This is only "straightforward" because I am able to apply ` return t.sin();' inside the public DerivativeStructure method.
The second program is not able to directly reference t.sin(x) or any t.function() value because it is a custom function that is developed later in the program. My attempt at writing the second program involves
import java.util.TreeSet;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math3.analysis.differentiation.
UnivariateDifferentiableFunction;
import org.apache.commons.math3.analysis.solvers.*;
import org.apache.commons.math3.exception.DimensionMismatchException;
public class SiegelNew{
public static void main(String[] args){
SiegelMain();
}
// Main method
public static void SiegelMain() {
NewtonRaphsonSolver test = new NewtonRaphsonSolver(1E-10);
UnivariateDifferentiableFunction f = new
UnivariateDifferentiableFunction() {
public double value(double x) {
return RiemennZ(x, 4);
}
UnivariateFunction func = (double x) -> RiemennZ(x, 4);
public DerivativeStructure value(DerivativeStructure t) throws DimensionMismatchException {
//I have no idea what to write here
return new DerivativeStructure(1, 1, 0, func.value(x)));
}
};
System.out.println("Zeroes inside the critical line for " +
"Zeta(1/2 + it). The t values are referenced below.");
System.out.println();
double EPSILON = 1e-6;
TreeSet<Double> set = new TreeSet<>();
for (int i = 1; i <= 5000; i++) {
set.add(test.solve(1000, f, i, i+1));
}
for (Double s : set) {
if(s > 0)
System.out.println(s);
}
}
/**
* Needed as a reference for the interpolation function.
*/
public static interface Function {
public double f(double x);
}
/**
* The sign of a calculated double value.
* @param x - the double value.
* @return the sign in -1, 1, or 0 format.
*/
private static int sign(double x) {
if (x < 0.0)
return -1;
else if (x > 0.0)
return 1;
else
return 0;
}
/**
* Finds the roots of a specified function through interpolation.
* @param f - the function
* @param lowerBound - the lower bound of integration.
* @param upperBound - the upper bound of integration.
* @param step - the step for dx in [a:b]
* @return the roots of the specified function.
*/
public static void findRoots(Function f, double lowerBound,
double upperBound, double step) {
double x = lowerBound, next_x = x;
double y = f.f(x), next_y = y;
int s = sign(y), next_s = s;
for (x = lowerBound; x <= upperBound ; x += step) {
s = sign(y = f.f(x));
if (s == 0) {
System.out.println(x);
} else if (s != next_s) {
double dx = x - next_x;
double dy = y - next_y;
double cx = x - dx * (y / dy);
System.out.println(cx);
}
next_x = x; next_y = y; next_s = s;
}
}
/**
* Riemann-Siegel theta function using the approximation by the
* Stirling series.
* @param t - the value of t inside the Z(t) function.
* @return Stirling's approximation for theta(t).
*/
public static double theta (double t) {
return (t/2.0 * Math.log(t/(2.0*Math.PI)) - t/2.0 - Math.PI/8.0
+ 1.0/(48.0*Math.pow(t, 1)) + 7.0/(5760*Math.pow(t, 3)));
}
/**
* Computes Math.Floor of the absolute value term passed in as t.
* @param t - the value of t inside the Z(t) function.
* @return Math.floor of the absolute value of t.
*/
public static double fAbs(double t) {
return Math.floor(Math.abs(t));
}
/**
* Riemann-Siegel Z(t) function implemented per the Riemenn Siegel
* formula. See http://mathworld.wolfram.com/Riemann-SiegelFormula.html
* for details
* @param t - the value of t inside the Z(t) function.
* @param r - referenced for calculating the remainder terms by the
* Taylor series approximations.
* @return the approximate value of Z(t) through the Riemann-Siegel
* formula
*/
public static double RiemennZ(double t, int r) {
double twopi = Math.PI * 2.0;
double val = Math.sqrt(t/twopi);
double n = fAbs(val);
double sum = 0.0;
for (int i = 1; i <= n; i++) {
sum += (Math.cos(theta(t) - t * Math.log(i))) / Math.sqrt(i);
}
sum = 2.0 * sum;
double remainder;
double frac = val - n;
int k = 0;
double R = 0.0;
// Necessary to individually calculate each remainder term by using
// Taylor Series co-efficients. These coefficients are defined below.
while (k <= r) {
R = R + C(k, 2.0*frac-1.0) * Math.pow(t / twopi,
((double) k) * -0.5);
k++;
}
remainder = Math.pow(-1, (int)n-1) * Math.pow(t / twopi, -0.25) * R;
return sum + remainder;
}
/**
* C terms for the Riemann-Siegel formula. See
* https://web.viu.ca/pughg/thesis.d/masters.thesis.pdf for details.
* Calculates the Taylor Series coefficients for C0, C1, C2, C3,
* and C4.
* @param n - the number of coefficient terms to use.
* @param z - referenced per the Taylor series calculations.
* @return the Taylor series approximation of the remainder terms.
*/
public static double C (int n, double z) {
if (n==0)
return(.38268343236508977173 * Math.pow(z, 0.0)
+.43724046807752044936 * Math.pow(z, 2.0)
+.13237657548034352332 * Math.pow(z, 4.0)
-.01360502604767418865 * Math.pow(z, 6.0)
-.01356762197010358089 * Math.pow(z, 8.0)
-.00162372532314446528 * Math.pow(z,10.0)
+.00029705353733379691 * Math.pow(z,12.0)
+.00007943300879521470 * Math.pow(z,14.0)
+.00000046556124614505 * Math.pow(z,16.0)
-.00000143272516309551 * Math.pow(z,18.0)
-.00000010354847112313 * Math.pow(z,20.0)
+.00000001235792708386 * Math.pow(z,22.0)
+.00000000178810838580 * Math.pow(z,24.0)
-.00000000003391414390 * Math.pow(z,26.0)
-.00000000001632663390 * Math.pow(z,28.0)
-.00000000000037851093 * Math.pow(z,30.0)
+.00000000000009327423 * Math.pow(z,32.0)
+.00000000000000522184 * Math.pow(z,34.0)
-.00000000000000033507 * Math.pow(z,36.0)
-.00000000000000003412 * Math.pow(z,38.0)
+.00000000000000000058 * Math.pow(z,40.0)
+.00000000000000000015 * Math.pow(z,42.0));
else if (n==1)
return(-.02682510262837534703 * Math.pow(z, 1.0)
+.01378477342635185305 * Math.pow(z, 3.0)
+.03849125048223508223 * Math.pow(z, 5.0)
+.00987106629906207647 * Math.pow(z, 7.0)
-.00331075976085840433 * Math.pow(z, 9.0)
-.00146478085779541508 * Math.pow(z,11.0)
-.00001320794062487696 * Math.pow(z,13.0)
+.00005922748701847141 * Math.pow(z,15.0)
+.00000598024258537345 * Math.pow(z,17.0)
-.00000096413224561698 * Math.pow(z,19.0)
-.00000018334733722714 * Math.pow(z,21.0)
+.00000000446708756272 * Math.pow(z,23.0)
+.00000000270963508218 * Math.pow(z,25.0)
+.00000000007785288654 * Math.pow(z,27.0)
-.00000000002343762601 * Math.pow(z,29.0)
-.00000000000158301728 * Math.pow(z,31.0)
+.00000000000012119942 * Math.pow(z,33.0)
+.00000000000001458378 * Math.pow(z,35.0)
-.00000000000000028786 * Math.pow(z,37.0)
-.00000000000000008663 * Math.pow(z,39.0)
-.00000000000000000084 * Math.pow(z,41.0)
+.00000000000000000036 * Math.pow(z,43.0)
+.00000000000000000001 * Math.pow(z,45.0));
else if (n==2)
return(+.00518854283029316849 * Math.pow(z, 0.0)
+.00030946583880634746 * Math.pow(z, 2.0)
-.01133594107822937338 * Math.pow(z, 4.0)
+.00223304574195814477 * Math.pow(z, 6.0)
+.00519663740886233021 * Math.pow(z, 8.0)
+.00034399144076208337 * Math.pow(z,10.0)
-.00059106484274705828 * Math.pow(z,12.0)
-.00010229972547935857 * Math.pow(z,14.0)
+.00002088839221699276 * Math.pow(z,16.0)
+.00000592766549309654 * Math.pow(z,18.0)
-.00000016423838362436 * Math.pow(z,20.0)
-.00000015161199700941 * Math.pow(z,22.0)
-.00000000590780369821 * Math.pow(z,24.0)
+.00000000209115148595 * Math.pow(z,26.0)
+.00000000017815649583 * Math.pow(z,28.0)
-.00000000001616407246 * Math.pow(z,30.0)
-.00000000000238069625 * Math.pow(z,32.0)
+.00000000000005398265 * Math.pow(z,34.0)
+.00000000000001975014 * Math.pow(z,36.0)
+.00000000000000023333 * Math.pow(z,38.0)
-.00000000000000011188 * Math.pow(z,40.0)
-.00000000000000000416 * Math.pow(z,42.0)
+.00000000000000000044 * Math.pow(z,44.0)
+.00000000000000000003 * Math.pow(z,46.0));
else if (n==3)
return(-.00133971609071945690 * Math.pow(z, 1.0)
+.00374421513637939370 * Math.pow(z, 3.0)
-.00133031789193214681 * Math.pow(z, 5.0)
-.00226546607654717871 * Math.pow(z, 7.0)
+.00095484999985067304 * Math.pow(z, 9.0)
+.00060100384589636039 * Math.pow(z,11.0)
-.00010128858286776622 * Math.pow(z,13.0)
-.00006865733449299826 * Math.pow(z,15.0)
+.00000059853667915386 * Math.pow(z,17.0)
+.00000333165985123995 * Math.pow(z,19.0)
+.00000021919289102435 * Math.pow(z,21.0)
-.00000007890884245681 * Math.pow(z,23.0)
-.00000000941468508130 * Math.pow(z,25.0)
+.00000000095701162109 * Math.pow(z,27.0)
+.00000000018763137453 * Math.pow(z,29.0)
-.00000000000443783768 * Math.pow(z,31.0)
-.00000000000224267385 * Math.pow(z,33.0)
-.00000000000003627687 * Math.pow(z,35.0)
+.00000000000001763981 * Math.pow(z,37.0)
+.00000000000000079608 * Math.pow(z,39.0)
-.00000000000000009420 * Math.pow(z,41.0)
-.00000000000000000713 * Math.pow(z,43.0)
+.00000000000000000033 * Math.pow(z,45.0)
+.00000000000000000004 * Math.pow(z,47.0));
else
return(+.00046483389361763382 * Math.pow(z, 0.0)
-.00100566073653404708 * Math.pow(z, 2.0)
+.00024044856573725793 * Math.pow(z, 4.0)
+.00102830861497023219 * Math.pow(z, 6.0)
-.00076578610717556442 * Math.pow(z, 8.0)
-.00020365286803084818 * Math.pow(z,10.0)
+.00023212290491068728 * Math.pow(z,12.0)
+.00003260214424386520 * Math.pow(z,14.0)
-.00002557906251794953 * Math.pow(z,16.0)
-.00000410746443891574 * Math.pow(z,18.0)
+.00000117811136403713 * Math.pow(z,20.0)
+.00000024456561422485 * Math.pow(z,22.0)
-.00000002391582476734 * Math.pow(z,24.0)
-.00000000750521420704 * Math.pow(z,26.0)
+.00000000013312279416 * Math.pow(z,28.0)
+.00000000013440626754 * Math.pow(z,30.0)
+.00000000000351377004 * Math.pow(z,32.0)
-.00000000000151915445 * Math.pow(z,34.0)
-.00000000000008915418 * Math.pow(z,36.0)
+.00000000000001119589 * Math.pow(z,38.0)
+.00000000000000105160 * Math.pow(z,40.0)
-.00000000000000005179 * Math.pow(z,42.0)
-.00000000000000000807 * Math.pow(z,44.0)
+.00000000000000000011 * Math.pow(z,46.0)
+.00000000000000000004 * Math.pow(z,48.0));
}
}
The problem with the second program is due to
UnivariateDifferentiableFunction f = new
UnivariateDifferentiableFunction() {
public double value(double x) {
return RiemennZ(x, 4);
}
UnivariateFunction func = (double x) -> RiemennZ(x, 4);
public DerivativeStructure value(DerivativeStructure t) throws DimensionMismatchException {
//I have no idea what to write here
return new DerivativeStructure(1, 1, 0, func.value(x)));
}
};
Which specifically deals with implementing
public DerivativeStructure value(DerivativeStructure t) throws DimensionMismatchException {
//I have no idea what to write here
return new DerivativeStructure(1, 1, 0, func.value(x)));
}
Inside the Apache Commons Math library, the following documentation is listed at the end of this page.
There are several ways a user can create an implementation of the UnivariateDifferentiableFunction interface. The first method is to simply write it directly using the appropriate methods from DerivativeStructure to compute addition, subtraction, sine, cosine... This is often quite straigthforward and there is no need to remember the rules for differentiation: the user code only represent the function itself, the differentials will be computed automatically under the hood. The second method is to write a classical UnivariateFunction and to pass it to an existing implementation of the UnivariateFunctionDifferentiator interface to retrieve a differentiated version of the same function. The first method is more suited to small functions for which user already control all the underlying code. The second method is more suited to either large functions that would be cumbersome to write using the DerivativeStructure API, or functions for which user does not have control to the full underlying code (for example functions that call external libraries).
Is there some way of working around this issue through writing and then implementing the DerivativeStructure by an interface?
I do not know exactly, what RiemennZ
is, but it seems to be some kind of function family. In that case, you should implement it in a way that yields a new UnivariateDifferentiableFunction
for each value of the second parameter:
public static UnivariateDifferentiableFunction RiemennZ(int r) {
return new UnivariateDifferentiableFunction() {
double value(double t) {
/* YOUR CODE FROM ABOVE */
}
public DerivativeStructure value(DerivativeStructure t) {
/* YOUR CODE FROM ABOVE BUT AS A DS */
}
}
This is called a Higher order function, and quite common in other languages. You have to provide the DerivativeStructure
implementation only for the argument you actually want to differentiate.