javaarraylistcollectionslinked-list# When to use LinkedList over ArrayList in Java?

I've always been one to simply use:

```
List<String> names = new ArrayList<>();
```

I use the interface as the type name for *portability*, so that when I ask questions such as this, I can rework my code.

When should `LinkedList`

be used over `ArrayList`

and vice-versa?

Solution

**Summary** `ArrayList`

with `ArrayDeque`

are preferable in *many* more use-cases than `LinkedList`

. If you're not sure — just start with `ArrayList`

.

TLDR, in `ArrayList`

accessing an element takes constant time [O(1)] and adding an element takes O(n) time [worst case]. In `LinkedList`

inserting an element takes O(n) time and accessing also takes O(n) time but `LinkedList`

uses more memory than `ArrayList`

.

`LinkedList`

and `ArrayList`

are two different implementations of the `List`

interface. `LinkedList`

implements it with a doubly-linked list. `ArrayList`

implements it with a dynamically re-sizing array.

As with standard linked list and array operations, the various methods will have different algorithmic runtimes.

For `LinkedList<E>`

`get(int index)`

is*O(n)*(with*n/4*steps on average), but*O(1)*when`index = 0`

or`index = list.size() - 1`

(in this case, you can also use`getFirst()`

and`getLast()`

).**One of the main benefits of**`LinkedList<E>`

`add(int index, E element)`

is*O(n)*(with*n/4*steps on average), but*O(1)*when`index = 0`

or`index = list.size() - 1`

(in this case, you can also use`addFirst()`

and`addLast()`

/`add()`

).**One of the main benefits of**`LinkedList<E>`

`remove(int index)`

is*O(n)*(with*n/4*steps on average), but*O(1)*when`index = 0`

or`index = list.size() - 1`

(in this case, you can also use`removeFirst()`

and`removeLast()`

).**One of the main benefits of**`LinkedList<E>`

`Iterator.remove()`

is*O(1)*.**One of the main benefits of**`LinkedList<E>`

`ListIterator.add(E element)`

is*O(1)*.**One of the main benefits of**`LinkedList<E>`

^{Note: Many of the operations need n/4 steps on average, constant number of steps in the best case (e.g. index = 0), and n/2 steps in worst case (middle of list)}

For `ArrayList<E>`

`get(int index)`

is*O(1)*.**Main benefit of**`ArrayList<E>`

`add(E element)`

is*O(1)*amortized, but*O(n)*worst-case since the array must be resized and copied`add(int index, E element)`

is*O(n)*(with*n/2*steps on average)`remove(int index)`

is*O(n)*(with*n/2*steps on average)`Iterator.remove()`

is*O(n)*(with*n/2*steps on average)`ListIterator.add(E element)`

is*O(n)*(with*n/2*steps on average)

^{Note: Many of the operations need n/2 steps on average, constant number of steps in the best case (end of list), n steps in the worst case (start of list)}

`LinkedList<E>`

allows for constant-time insertions or removals *using iterators*, but only sequential access of elements. In other words, you can walk the list forwards or backwards, but finding a position in the list takes time proportional to the size of the list. Javadoc says *"operations that index into the list will traverse the list from the beginning or the end, whichever is closer"*, so those methods are *O(n)* (*n/4* steps) on average, though *O(1)* for `index = 0`

.

`ArrayList<E>`

, on the other hand, allow fast random read access, so you can grab any element in constant time. But adding or removing from anywhere but the end requires shifting all the latter elements over, either to make an opening or fill the gap. Also, if you add more elements than the capacity of the underlying array, a new array (1.5 times the size) is allocated, and the old array is copied to the new one, so adding to an `ArrayList`

is *O(n)* in the worst case but constant on average.

So depending on the operations you intend to do, you should choose the implementations accordingly. Iterating over either kind of List is practically equally cheap. (Iterating over an `ArrayList`

is technically faster, but unless you're doing something really performance-sensitive, you shouldn't worry about this -- they're both constants.)

The main benefits of using a `LinkedList`

arise when you re-use existing iterators to insert and remove elements. These operations can then be done in *O(1)* by changing the list locally only. In an array list, the remainder of the array needs to be *moved* (i.e. copied). On the other side, seeking in a `LinkedList`

means following the links in *O(n)* (*n/2* steps) for worst case, whereas in an `ArrayList`

the desired position can be computed mathematically and accessed in *O(1)*.

Another benefit of using a `LinkedList`

arises when you add or remove from the head of the list, since those operations are *O(1)*, while they are *O(n)* for `ArrayList`

. Note that `ArrayDeque`

may be a good alternative to `LinkedList`

for adding and removing from the head, but it is not a `List`

.

Also, if you have large lists, keep in mind that memory usage is also different. Each element of a `LinkedList`

has more overhead since pointers to the next and previous elements are also stored. `ArrayLists`

don't have this overhead. However, `ArrayLists`

take up as much memory as is allocated for the capacity, regardless of whether elements have actually been added.

The default initial capacity of an `ArrayList`

is pretty small (10 from Java 1.4 - 1.8). But since the underlying implementation is an array, the array must be resized if you add a lot of elements. To avoid the high cost of resizing when you know you're going to add a lot of elements, construct the `ArrayList`

with a higher initial capacity.

If the data structures perspective is used to understand the two structures, a LinkedList is basically a sequential data structure which contains a head Node. The Node is a wrapper for two components : a value of type T [accepted through generics] and another reference to the Node linked to it. So, we can assert it is a recursive data structure (a Node contains another Node which has another Node and so on...). Addition of elements takes linear time in LinkedList as stated above.

An ArrayList is a growable array. It is just like a regular array. Under the hood, when an element is added, and the ArrayList is already full to capacity, it creates another array with a size which is greater than previous size. The elements are then copied from previous array to new one and the elements that are to be added are also placed at the specified indices.

- Kotlin: Interface ... does not have constructors
- Spring Data JDBC - Many-to-One Relationship
- How to use TabLayout with ViewPager2 in Android
- Spring Boot app: Could not resolve placeholder in application.properties?
- Reassign `this` in Java class
- Dynamically converting java object of Object class to a given class when class name is known
- Spring Boot Security - Postman gives 401 Unauthorized
- Passing multiple values for a Modelandview
- When printing PDF Document from Java, some of the text is rotated
- The method save(User) is undefined for the type UserRepositoryJava(67108964)
- How to use mobile: startActivity with OptionalIntentArguments?
- Date.plus not working in 2.5.4 Groovy Runtime, what is the alternative?
- Java: How do I store List<Integer> in Queue?
- Is object fix-sized in java
- Best approach to execute service in Android
- ClassCastException while completing Firebase function (Uri and String) Android Java
- Android service with START_STICKY crashes on killing app
- Whitespace in bash path with java
- Why does calling getWidth() on a View in onResume() return 0?
- Log.d not showing log.d in Logcat Android Studio
- Lucene: Search and retrieve based on relevance
- Using path with spaces in Shell script
- Java LocalTime.parse working in spring boot on local PC but not working in Docker container
- Can I skip/omit a log4j2 configurationFile that doesn't exist to fall back to an existing one?
- Explain Recursion Output
- Regex expression that matches maximum of 2 asterisks and minimum of 2 chars other than asterisk
- Unable to connect to MongoDb using Spring Data JPA
- Storing a returned array in Java
- Java How to get time printed in IST
- Java Decorators - Writing classes as decorators