I followed this tutorial to search the relevant words in my documents. My code:
>>> for i, blob in enumerate(bloblist):
print i+1
scores = {word: tfidf(word, blob, bloblist) for word in blob.words}
sorted_words = sorted(scores.items(), key=lambda x: x[1], reverse=True)
for word, score in sorted_words[:10]:
print("\t{}, score {}".format(word, round(score, 5)))
1
k555ld-xx1014h, score 0.19706
fuera, score 0.03111
dentro, score 0.01258
i5, score 0.0051
1tb, score 0.00438
sorprende, score 0.00358
8gb, score 0.0031
asus, score 0.00228
ordenador, score 0.00171
duro, score 0.00157
2
frentes, score 0.07007
write, score 0.05733
acceleration, score 0.05255
aprovechando, score 0.05255
. . .
Here's my problem, I would like to export a data frame with the following information: index, 10 top words (separated with commas). Something that i can save with pandas dataframe. Example:
TOPWORDS = pd.DataFrame(topwords.items(), columns=['ID', 'TAGS'])
Thank you all in advance.
Solved!
Here's my solution, perhaps not the best but it works.
tags = {}
for i, blob in enumerate(bloblist):
scores = {word: tfidf(word, blob, bloblist) for word in blob.words}
sorted_words = sorted(scores.items(), key=lambda x: x[1], reverse=True)
a =""
for word, score in sorted_words[:10]:
a= a + ' '+ word
tags[i+1] = a