I have a custom tokenizer function with some keyword arguments:
def tokenizer(text, stem=True, lemmatize=False, char_lower_limit=2, char_upper_limit=30):
do things...
return tokens
Now, how can I can pass this tokenizer with all its arguments to CountVectorizer? Nothing I tried works; this did not work either:
from sklearn.feature_extraction.text import CountVectorizer
args = {"stem": False, "lemmatize": True}
count_vect = CountVectorizer(tokenizer=tokenizer(**args), stop_words='english', strip_accents='ascii', min_df=0, max_df=1., vocabulary=None)
Any help is much appreciated. Thanks in advance.
The tokenizer
should be a callable or None.
(Is tokenizer=tokenize(**args)
a typo? Your function name above is tokenizer
.)
You can try this:
count_vect = CountVectorizer(tokenizer=lambda text: tokenizer(text, **args), stop_words='english', strip_accents='ascii', min_df=0, max_df=1., vocabulary=None)