I have been not using math for a long time and this should be a simple problem to solve.
Suppose I have two points A: (1, 0) and B: (1, -1).
I want to use a program (Python or whatever programming language) to calculate the clockwise angle between A, origin (0, 0) and B. It will be something like this:
angle_clockwise(point1, point2)
Note that the order of the parameters matters. Since the angle calculation will be clockwise:
In other words, the algorithm is like this:
Is there any way to code this problem?
Use the inner product and the determinant of the two vectors. This is really what you should understand if you want to understand how this works. You'll need to know/read about vector math to understand.
See: https://en.wikipedia.org/wiki/Dot_product and https://en.wikipedia.org/wiki/Determinant
from math import acos
from math import sqrt
from math import pi
def length(v):
return sqrt(v[0]**2+v[1]**2)
def dot_product(v,w):
return v[0]*w[0]+v[1]*w[1]
def determinant(v,w):
return v[0]*w[1]-v[1]*w[0]
def inner_angle(v,w):
cosx=dot_product(v,w)/(length(v)*length(w))
rad=acos(cosx) # in radians
return rad*180/pi # returns degrees
def angle_clockwise(A, B):
inner=inner_angle(A,B)
det = determinant(A,B)
if det<0: #this is a property of the det. If the det < 0 then B is clockwise of A
return inner
else: # if the det > 0 then A is immediately clockwise of B
return 360-inner
In the determinant computation, you're concatenating the two vectors to form a 2 x 2 matrix, for which you're computing the determinant.