I am looking for a Python library which would support mesh queries. For now, I have looked at openmesh
, but I am a bit afraid that would be an overkill for my small master thesis project. The features which I need is:
And if I am really successful, I might need also to:
Is it possible to do this with numpy
so I could keep my depedency list small? For now I plan that the initial mesh will be generated with distmesh
(pydistmesh
). Does it have parts which could be useful for my mesh queries?
Theese kinds of queries became quite easy and effiecient with improved face based data structure which is used by CGAL. Here I have implemented code to valk around one specific vertex:
# The demonstration of improved face based data structure
from numpy import array
triangles = array([[ 5, 7, 10],
[ 7, 5, 6],
[ 4, 0, 3],
[ 0, 4, 6],
[ 4, 7, 6],
[ 4, 9, 10],
[ 7, 4, 10],
[ 0, 2, 1],
[ 2, 0, 6],
[ 2, 5, 1],
[ 5, 2, 6],
[ 8, 4, 3],
[ 4, 11, 9],
[ 8, 11, 4],
[ 9, 11, 3],
[11, 8, 3]], dtype=int)
points = array([[ 0.95448092, 0.45655774],
[ 0.86370317, 0.02141752],
[ 0.53821089, 0.16915935],
[ 0.97218064, 0.72769053],
[ 0.55030382, 0.70878147],
[ 0.34692982, 0.08765148],
[ 0.46289581, 0.29827649],
[ 0.21159925, 0.39472549],
[ 0.61679844, 0.79488884],
[ 0.4272861 , 0.93375762],
[ 0.12451604, 0.54267654],
[ 0.45974728, 0.91139648]])
import pylab as plt
fig = plt.figure()
pylab.triplot(points[:,0],points[:,1],triangles)
for i,tri in enumerate(triangles):
v1,v2,v3 = points[tri]
vavg = (v1 + v2 + v3)/3
plt.text(vavg[0],vavg[1],i)
#plt.show()
## constructing improved face based data structure
def edge_search(v1,v2,skip):
"""
Which triangle has edge with verticies i and j and aren't triangle <skip>?
"""
neigh = -1
for i,tri in enumerate(triangles):
if (v1 in tri) and (v2 in tri):
if i is skip:
continue
else:
neigh = i
break
return(neigh)
def triangle_search(i):
"""
For given vertex with index i return any triangle from neigberhood
"""
for i,tri in enumerate(triangles):
if i in tri:
return(i)
neighberhood = []
for i,tri in enumerate(triangles):
v1, v2, v3 = tri
t3 = edge_search(v1,v2,i)
t1 = edge_search(v2,v3,i)
t2 = edge_search(v3,v1,i)
neighberhood.append([t1,t2,t3])
neighberhood = array(neighberhood,dtype=int)
faces = []
for vi,_ in enumerate(points):
faces.append(triangle_search(vi))
## Now walking over first ring can be implemented
def triangle_ring(vertex):
tri_start = faces[vertex]
tri = tri_start
## with asumption that vertex is not on the boundary
for i in range(10):
yield tri
boolindx = triangles[tri]==vertex
# permutating to next and previous vertex
w = boolindx[[0,1,2]]
cw = boolindx[[2,0,1]]
ccw = boolindx[[1,2,0]]
ct = neighberhood[tri][cw][0]
if ct==tri_start:
break
else:
tri=ct
for i in triangle_ring(6):
print(i)
## Using it for drawing lines on plot
vertex = 6
ring_points = []
for i in triangle_ring(vertex):
vi = triangles[i]
cw = (vi==vertex)[[2,0,1]]
print("v={}".format(vi[cw][0]))
ring_points.append(vi[cw][0])
data = array([points[i] for i in ring_points])
plt.plot(data[:,0],data[:,1],"ro")
#plt.savefig("topology.png")
plt.show()
input("Press Enter to continue...")
plt.close("all")