I want to compute the density of particles over a grid. Therefore, I have a vector that contains the cellID
of each particle, as well as a vector with the given mass
which does not have to be uniform.
I have taken the non-sparse example from Thrust
to compute a histogram of my particles.
However, to compute the density, I need to include the weight of each particle, instead of simply summing the number of particles per cell, i.e. I'm interested in rho[i] = sum W[j]
for all j
that satify cellID[j]=i
(probably unnecessary to explain, since everybody knows that).
Implementing this with Thrust
has not worked for me. I also tried to use a CUDA kernel and thrust_raw_pointer_cast
, but I did not succeed with that either.
EDIT:
Here is a minimal working example which should compile via nvcc file.cu
under CUDA 6.5 and with Thrust installed.
#include <thrust/device_vector.h>
#include <thrust/sort.h>
#include <thrust/copy.h>
#include <thrust/binary_search.h>
#include <thrust/adjacent_difference.h>
// Predicate
struct is_out_of_bounds {
__host__ __device__ bool operator()(int i) {
return (i < 0); // out of bounds elements have negative id;
}
};
// cf.: https://code.google.com/p/thrust/source/browse/examples/histogram.cu, but modified
template<typename T1, typename T2>
void computeHistogram(const T1& input, T2& histogram) {
typedef typename T1::value_type ValueType; // input value type
typedef typename T2::value_type IndexType; // histogram index type
// copy input data (could be skipped if input is allowed to be modified)
thrust::device_vector<ValueType> data(input);
// sort data to bring equal elements together
thrust::sort(data.begin(), data.end());
// there are elements that we don't want to count, those have ID -1;
data.erase(thrust::remove_if(data.begin(), data.end(), is_out_of_bounds()),data.end());
// number of histogram bins is equal to the maximum value plus one
IndexType num_bins = histogram.size();
// find the end of each bin of values
thrust::counting_iterator<IndexType> search_begin(0);
thrust::upper_bound(data.begin(), data.end(), search_begin,
search_begin + num_bins, histogram.begin());
// compute the histogram by taking differences of the cumulative histogram
thrust::adjacent_difference(histogram.begin(), histogram.end(),
histogram.begin());
}
int main(void) {
thrust::device_vector<int> cellID(5);
cellID[0] = -1; cellID[1] = 1; cellID[2] = 0; cellID[3] = 2; cellID[4]=1;
thrust::device_vector<float> mass(5);
mass[0] = .5; mass[1] = 1.0; mass[2] = 2.0; mass[3] = 3.0; mass[4] = 4.0;
thrust::device_vector<int> histogram(3);
thrust::device_vector<float> density(3);
computeHistogram(cellID,histogram);
std::cout<<"\nHistogram:\n";
thrust::copy(histogram.begin(), histogram.end(),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
// this will print: " Histogram 1 2 1 "
// meaning one element with ID 0, two elements with ID 1
// and one element with ID 2
/* here is what I am unable to implement:
*
*
* computeDensity(cellID,mass,density);
*
* print(density): 2.0 5.0 3.0
*
*
*/
}
I hope the comment at the end of the file also makes clear what I mean by computing the density. If there is any question open, please feel free to ask. Thanks!
There still seems to be a problem in understanding my problem, which I am sorry for! Therefore I added some pictures.
Consider the first picture. For my understanding, a histogram would simply be the count of particles per grid cell. In this case a histogram would be an array of size 36, since there are 36 cells. Also, there would be a lot of zero entries in the vector, since for example in the upper left corner almost no cell contains a particle. This is what I already have in my code.
Now consider the slightly more complicated case. Here each particle has a different mass, indicated by the different size in the plot. To compute the density I can't just add the number of particles per cell, but I have to add the mass of all particles per cell. This is what I'm unable to implement.
What you described in your example does not look like a histogram but rather like a segmented reduction.
The following example code uses thrust::reduce_by_key
to sum up the masses of particles within the same cell:
density.cu
#include <thrust/device_vector.h>
#include <thrust/sort.h>
#include <thrust/reduce.h>
#include <thrust/copy.h>
#include <thrust/scatter.h>
#include <iostream>
#define PRINTER(name) print(#name, (name))
template <template <typename...> class V, typename T, typename ...Args>
void print(const char* name, const V<T,Args...> & v)
{
std::cout << name << ":\t\t";
thrust::copy(v.begin(), v.end(), std::ostream_iterator<T>(std::cout, "\t"));
std::cout << std::endl << std::endl;
}
int main()
{
const int particle_count = 5;
const int cell_count = 10;
thrust::device_vector<int> cellID(particle_count);
cellID[0] = -1; cellID[1] = 1; cellID[2] = 0; cellID[3] = 2; cellID[4]=1;
thrust::device_vector<float> mass(particle_count);
mass[0] = .5; mass[1] = 1.0; mass[2] = 2.0; mass[3] = 3.0; mass[4] = 4.0;
std::cout << "input data" << std::endl;
PRINTER(cellID);
PRINTER(mass);
thrust::sort_by_key(cellID. begin(), cellID.end(), mass.begin());
std::cout << "after sort_by_key" << std::endl;
PRINTER(cellID);
PRINTER(mass);
thrust::device_vector<int> reduced_cellID(particle_count);
thrust::device_vector<float> density(particle_count);
int new_size = thrust::reduce_by_key(cellID. begin(), cellID.end(),
mass.begin(),
reduced_cellID.begin(),
density.begin()
).second - density.begin();
if (reduced_cellID[0] == -1)
{
density.erase(density.begin());
reduced_cellID.erase(reduced_cellID.begin());
new_size--;
}
density.resize(new_size);
reduced_cellID.resize(new_size);
std::cout << "after reduce_by_key" << std::endl;
PRINTER(density);
PRINTER(reduced_cellID);
thrust::device_vector<float> final_density(cell_count);
thrust::scatter(density.begin(), density.end(), reduced_cellID.begin(), final_density.begin());
PRINTER(final_density);
}
compile using
nvcc -std=c++11 density.cu -o density
output
input data
cellID: -1 1 0 2 1
mass: 0.5 1 2 3 4
after sort_by_key
cellID: -1 0 1 1 2
mass: 0.5 2 1 4 3
after reduce_by_key
density: 2 5 3
reduced_cellID: 0 1 2
final_density: 2 5 3 0 0 0 0 0 0 0