I have this query which takes 86 sec to execute.
select cust_id customer_id,
cust_first_name customer_first_name,
cust_last_name customer_last_name,
cust_prf customer_prf,
cust_birth_country customer_birth_country,
cust_login customer_login,
cust_email_address customer_email_address,
date_year ddyear,
sum(((stock_ls_price-stock_ws_price-stock_ds_price)+stock_es_price)/2) total_yr,
's' stock_type
from customer, stock, date
where customer_k = stock_customer_k
and stock_soldate_k = date_k
group by cust_id, cust_first_name, cust_last_name, cust_prf, cust_birth_country, cust_login, cust_email_address, date_year;
EXPLAIN ANALYZE RESULT:
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
GroupAggregate (cost=639753.55..764040.06 rows=2616558 width=213) (actual time=81192.575..86536.398 rows=190581 loops=1)
Group Key: customer.cust_id, customer.cust_first_name, customer.cust_last_name, customer.cust_prf, customer.cust_birth_country, customer.cust_login, customer.cust_email_address, date.date_year
-> Sort (cost=639753.55..646294.95 rows=2616558 width=213) (actual time=81192.468..83977.960 rows=2685453 loops=1)
Sort Key: customer.cust_id, customer.cust_first_name, customer.cust_last_name, customer.cust_prf, customer.cust_birth_country, customer.cust_login, customer.cust_email_address, date.date_year
Sort Method: external merge Disk: 460920kB
-> Hash Join (cost=6527.66..203691.58 rows=2616558 width=213) (actual time=60.500..2306.082 rows=2685453 loops=1)
Hash Cond: (stock.stock_customer_k = customer.customer_k)
-> Merge Join (cost=1423.66..144975.59 rows=2744641 width=30) (actual time=8.820..1412.109 rows=2750311 loops=1)
Merge Cond: (date.date_k = stock.stock_soldate_k)
-> Index Scan using date_key_idx on date (cost=0.29..2723.33 rows=73049 width=8) (actual time=0.013..7.164 rows=37622 loops=1)
-> Index Scan using stock_soldate_k_index on stock (cost=0.43..108829.12 rows=2880404 width=30) (actual time=0.004..735.043 rows=2750312 loops=1)
-> Hash (cost=3854.00..3854.00 rows=100000 width=191) (actual time=51.650..51.650rows=100000 loops=1)
Buckets: 16384 Batches: 1 Memory Usage: 16139kB
-> Seq Scan on customer (cost=0.00..3854.00 rows=100000 width=191) (actual time=0.004..30.341 rows=100000 loops=1)
Planning time: 1.761 ms
Execution time: 86621.807 ms
I have work_mem=512MB
. I have indexes created on
cust_id
, customer_k
, stock_customer_k
, stock_soldate_k
and date_k
.
There are about 100,000 rows in customer
, 3,000,000 rows in stock
and 80,000 rows in date
.
How can I make this query run faster? I would appreciate any help!
TABLE DEFINITIONS
date
Column | Type | Modifiers
---------------------+---------------+-----------
date_k | integer | not null
date_id | character(16) | not null
date_date | date |
date_year | integer |
stock
Column | Type | Modifiers
-----------------------+--------------+-----------
stock_soldate_k | integer |
stock_soltime_k | integer |
stock_customer_k | integer |
stock_ds_price | numeric(7,2) |
stock_es_price | numeric(7,2) |
stock_ls_price | numeric(7,2) |
stock_ws_price | numeric(7,2) |
customer:
Column | Type | Modifiers
---------------------------+-----------------------+-----------
customer_k | integer | not null
customer_id | character(16) | not null
cust_first_name | character(20) |
cust_last_name | character(30) |
cust_prf | character(1) |
cust_birth_country | character varying(20) |
cust_login | character(13) |
cust_email_address | character(50) |
TABLE "stock" CONSTRAINT "st1" FOREIGN KEY (stock_soldate_k) REFERENCES date(date_k)
"st2" FOREIGN KEY (stock_customer_k) REFERENCES customer(customer_k)
Try this:
with stock_grouped as
(select stock_customer_k, date_year, sum(((stock_ls_price-stock_ws_price-stock_ds_price)+stock_es_price)/2) total_yr
from stock, date
where stock_soldate_k = date_k
group by stock_customer_k, date_year)
select cust_id customer_id,
cust_first_name customer_first_name,
cust_last_name customer_last_name,
cust_prf customer_prf,
cust_birth_country customer_birth_country,
cust_login customer_login,
cust_email_address customer_email_address,
date_year ddyear,
total_yr,
's' stock_type
from customer, stock_grouped
where customer_k = stock_customer_k
This query anticipates the grouping over the join.