I've got a pandas DataFrame that looks like this:
sum
1948 NaN
1949 NaN
1950 5
1951 3
1952 NaN
1953 4
1954 8
1955 NaN
and I would like to cut off the NaN
s at the beginning and at the end ONLY (i.e. only the values incl. NaN
from 1950 to 1954 should remain).
I already tried .isnull()
and dropna()
, but somehow I couldn't find a proper solution.
Can anyone help?
Use the built in first_valid_index
and last_valid_index
they are designed specifically for this and slice your df:
In [5]:
first_idx = df.first_valid_index()
last_idx = df.last_valid_index()
print(first_idx, last_idx)
df.loc[first_idx:last_idx]
1950 1954
Out[5]:
sum
1950 5
1951 3
1952 NaN
1953 4
1954 8