I am trying to implement my own square root function which gives square root's integral part only e.g. square root of 3 = 1.
I saw the method here and tried to implement the method
int mySqrt(int x)
{
int n = x;
x = pow(2, ceil(log(n) / log(2)) / 2);
int y=0;
while (y < x)
{
y = (x + n / x) / 2;
x = y;
}
return x;
}
The above method fails for input 8. Also, I don't get why it should work.
Also, I tried the method here
int mySqrt(int x)
{
if (x == 0) return 0;
int x0 = pow(2, (log(x) / log(2))/2) ;
int y = x0;
int diff = 10;
while (diff>0)
{
x0 = (x0 + x / x0) / 2; diff = y - x0;
y = x0;
if (diff<0) diff = diff * (-1);
}
return x0;
}
In this second way, for input 3 the loop continues ... indefinitely (x0 toggles between 1 and 2).
I am aware that both are essentially versions of Netwon's method but I can't figure out why they fail in certain cases and how could I make them work for all cases. I guess i have the correct logic in implementation. I debugged my code but still I can't find a way to make it work.
This one works for me:
uintmax_t zsqrt(uintmax_t x)
{
if(x==0) return 0;
uintmax_t yn = x; // The 'next' estimate
uintmax_t y = 0; // The result
uintmax_t yp; // The previous estimate
do{
yp = y;
y = yn;
yn = (y + x/y) >> 1; // Newton step
}while(yn ^ yp); // (yn != yp) shortcut for dumb compilers
return y;
}
returns floor(sqrt(x))
Instead of testing for 0 with a single estimate, test with 2 estimates.
When I was writing this, I noticed the result estimate would sometimes oscillate. This is because, if the exact result is a fraction, the algorithm could only jump between the two nearest values. So, terminating when the next estimate is the same as the previous will prevent an infinite loop.