I am fitting a GLM using the DESeq2 package, and have the situation where individuals (RatIDs) are nested within the treatment (Diet). The author of the package suggests that the individuals be re-leveled from 1:N within each Diet (where N is the number of RatIDs within a specific Diet) rather than their original ID/factor level (DESeq2 vignette, page 35.)
The data looks something like this (there are actually more columns and rows, but omitted for simplicity):
Diet Extraction RatID
199 HAMSP 8 65
74 HAMS 9 108
308 HAMS 18 100
41 HAMSA 3 83
88 HAMSP 12 11
221 HAMSP 14 66
200 HAMSA 8 57
155 HAMSB 1 105
245 HAMSB 19 50
254 HAMS 21 90
182 HAMSB 4 4
283 HAMSA 23 59
180 HAMSP 4 22
71 HAMSP 9 112
212 HAMS 12 63
220 HAMSP 14 54
56 HAMS 7 81
274 HAMSP 1 11
114 HAMS 17 102
143 HAMSP 22 93
And here is a dput()
output for the structure:
data = structure(list(Diet = structure(c(4L, 1L, 1L, 2L, 4L, 4L, 2L,
3L, 3L, 1L, 3L, 2L, 4L, 4L, 1L, 4L, 1L, 4L, 1L, 4L), .Label = c("HAMS",
"HAMSA", "HAMSB", "HAMSP", "LAMS"), class = "factor"), Extraction = c(8L,
9L, 18L, 3L, 12L, 14L, 8L, 1L, 19L, 21L, 4L, 23L, 4L, 9L, 12L,
14L, 7L, 1L, 17L, 22L), RatID = structure(c(61L, 7L, 3L, 76L,
9L, 62L, 52L, 6L, 46L, 81L, 37L, 54L, 20L, 12L, 59L, 50L, 74L,
9L, 4L, 84L), .Label = c("1", "10", "100", "102", "103", "105",
"108", "109", "11", "110", "111", "112", "113", "13", "14", "16",
"17", "18", "20", "22", "23", "24", "25", "26", "27", "28", "29",
"3", "30", "31", "32", "34", "35", "36", "37", "39", "4", "40",
"42", "43", "45", "46", "48", "49", "5", "50", "51", "52", "53",
"54", "55", "57", "58", "59", "6", "60", "61", "62", "63", "64",
"65", "66", "67", "68", "69", "70", "71", "73", "77", "78", "79",
"8", "80", "81", "82", "83", "85", "86", "88", "89", "90", "91",
"92", "93", "94", "95", "96", "98", "99"), class = "factor")), .Names = c("Diet",
"Extraction", "RatID"), row.names = c(199L, 74L, 308L, 41L, 88L,
221L, 200L, 155L, 245L, 254L, 182L, 283L, 180L, 71L, 212L, 220L,
56L, 274L, 114L, 143L), class = "data.frame")
Can someone please specify an elegant way to generate the new factor levels for RatIDs within Diet as an additional column of the above data.frame. Could this be done with the roll function of data.table?
Desired output (done manually):
Diet Extraction RatID newCol
1 HAMSP 8 65 1
2 HAMS 9 108 1
3 HAMS 18 100 2
4 HAMSA 3 83 1
5 HAMSP 12 11 2
6 HAMSP 14 66 3
7 HAMSA 8 57 2
8 HAMSB 1 105 1
9 HAMSB 19 50 2
10 HAMS 21 90 3
11 HAMSB 4 4 3
12 HAMSA 23 59 3
13 HAMSP 4 22 4
14 HAMSP 9 112 5
15 HAMS 12 63 4
16 HAMSP 14 54 6
17 HAMS 7 81 5
18 HAMSP 1 11 2
19 HAMS 17 102 6
20 HAMSP 22 93 7
NOTE: There are not an equal number of Rats in each treatment. I'd also like the solution to not re-order the rows in the data (if possible).
EDIT: There is no 'natural' order to the RatIDs, just as long as there is a 1:1 mapping within a diet, its fine.
You can convert the 'RatID' to 'factor' and coerce it back to 'numeric'
library(data.table)#v1.9.4+
setDT(data)[, newCol:=as.numeric(factor(RatID,
levels=unique(RatID))), Diet]
# Diet Extraction RatID newCol
# 1: HAMSP 8 65 1
# 2: HAMS 9 108 1
# 3: HAMS 18 100 2
# 4: HAMSA 3 83 1
# 5: HAMSP 12 11 2
# 6: HAMSP 14 66 3
# 7: HAMSA 8 57 2
# 8: HAMSB 1 105 1
# 9: HAMSB 19 50 2
#10: HAMS 21 90 3
#11: HAMSB 4 4 3
#12: HAMSA 23 59 3
#13: HAMSP 4 22 4
#14: HAMSP 9 112 5
#15: HAMS 12 63 4
#16: HAMSP 14 54 6
#17: HAMS 7 81 5
#18: HAMSP 1 11 2
#19: HAMS 17 102 6
#20: HAMSP 22 93 7
Or use match
setDT(data)[, newCol:=match(RatID, unique(RatID)), Diet]
Or similar option with base R
data$newCol <- with(data, ave(as.numeric(levels(RatID))[RatID],
Diet, FUN=function(x) match(x, unique(x))))