Consider a fixed m by n matrix M, all of whose entries are 0 or 1. The question is whether there exists a non zero vector v, all of whose entries are -1, 0 or 1 for which Mv = 0. For example,
[0 1 1 1]
M_1 = [1 0 1 1]
[1 1 0 1]
In this example, there is no such vector v.
[1 0 0 0]
M_2 = [0 1 0 0]
[0 0 1 0]
In this example, the vector (0,0,0,1) gives M_2v = 0.
I am currently solving this problem by trying all different vectors v.
However, is it possible to express the problem as an integer programming problem or constraint programming problem so I can use an existing software package, such as SCIP instead which might be more efficient.
It would help a little if you also give a positive example, not just a negative.
I might have missed something in the requirement/definitions, but here is a way of doing it in the Constraint Programming (CP) system MiniZinc (http://minizinc.org/). It don't use any specific constraints unique to CP systems - except perhaps for the function syntax, so it should be possible to translate it to other CP or IP systems.
% dimensions
int: rows = 3;
int: cols = 4;
% the matrix
array[1..rows, 1..cols] of int: M = array2d(1..rows,1..cols,
[0, 1, 1, 1,
1, 0, 1, 1,
1, 1, 0, 1,
] );
% function for matrix multiplication: res = matrix x vec
function array[int] of var int: matrix_mult(array[int,int] of var int: m,
array[int] of var int: v) =
let {
array[index_set_2of2(m)] of var int: res; % result
constraint
forall(i in index_set_1of2(m)) (
res[i] = sum(j in index_set_2of2(m)) (
m[i,j]*v[j]
)
)
;
} in res; % return value
solve satisfy;
constraint
% M x v = 0
matrix_mult(M, v) = [0 | j in 1..cols] /\
sum(i in 1..cols) (abs(v[i])) != 0 % non-zero vector
;
output
[
"v: ", show(v), "\n",
"M: ",
]
++
[
if j = 1 then "\n" else " " endif ++
show(M[i,j])
| i in 1..rows, j in 1..cols
];
By changing the definition of "M" to use decision variables with the domain 0..1 instead of constants:
array[1..rows, 1..cols] of var 0..1: M;
then this model yield 18066 different solutions, for example these two:
v: [-1, 1, 1, 1]
M:
1 0 0 1
1 1 0 0
1 0 0 1
----------
v: [-1, 1, 1, 1]
M:
0 0 0 0
1 0 1 0
1 0 0 1
Note: Generating all solutions is probably more common in CP systems than in traditional MIP systems (this is a feature that I really appreciate).