I am putting my data into a bokeh layout of a heat map, but am getting a KeyError: '1'. It occurs right at the line num_calls = pivot_table[m][y]
does anybody know why this would be?
The pivot table I am using is below:
pivot_table.head()
Out[101]:
Month 1 2 3 4 5 6 7 8 9 CompanyName
Company 1 182 270 278 314 180 152 110 127 129
Company 2 163 147 192 142 186 231 214 130 112
Company 3 126 88 99 139 97 97 96 37 79
Company 4 84 89 71 95 80 89 83 88 104
Company 5 91 96 94 66 81 77 87 83 68
Month 10 11 12
CompanyName
Company 1 117 127 81
Company 2 117 93 101
Company 3 116 111 95
Company 4 93 78 64
Company 5 83 95 65
Below is the section of code leading up to the error:
pivot_table = pivot_table.reset_index()
pivot_table['CompanyName'] = [str(x) for x in pivot_table['CompanyName']]
Companies = list(pivot_table['CompanyName'])
months = ["1","2","3","4","5","6","7","8","9","10","11","12"]
pivot_table = pivot_table.set_index('CompanyName')
# this is the colormap from the original plot
colors = ["#75968f", "#a5bab7", "#c9d9d3", "#e2e2e2", "#dfccce",
"#ddb7b1", "#cc7878", "#933b41", "#550b1d" ]
# Set up the data for plotting. We will need to have values for every
# pair of year/month names. Map the rate to a color.
month = []
company = []
color = []
rate = []
for y in Companies:
for m in months:
month.append(m)
company.append(y)
num_calls = pivot_table[m][y]
rate.append(num_calls)
color.append(colors[min(int(num_calls)-2, 8)])
and upon request:
pivot_table.info()
<class 'pandas.core.frame.DataFrame'>
Index: 46 entries, Company1 to LastCompany
Data columns (total 12 columns):
1.0 46 non-null float64
2.0 46 non-null float64
3.0 46 non-null float64
4.0 46 non-null float64
5.0 46 non-null float64
6.0 46 non-null float64
7.0 46 non-null float64
8.0 46 non-null float64
9.0 46 non-null float64
10.0 46 non-null float64
11.0 46 non-null float64
12.0 46 non-null float64
dtypes: float64(12)
memory usage: 4.5+ KB
and
pivot_table.columns
Out[103]: Index([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0], dtype='object')
Also the bokeh code is here: http://docs.bokeh.org/en/latest/docs/gallery/unemployment.html
I've tried the following code and it works on my PC. I use .loc
with the aim to avoid potential key error.
import pandas as pd
import numpy as np
# just following your previous post to simulate your data
np.random.seed(0)
dates = np.random.choice(pd.date_range('2015-01-01 00:00:00', '2015-06-30 00:00:00', freq='1h'), 10000)
company = np.random.choice(['company' + x for x in '1 2 3 4 5'.split()], 10000)
df = pd.DataFrame(dict(recvd_dttm=dates, CompanyName=company)).set_index('recvd_dttm').sort_index()
df['C'] = 1
df.columns = ['CompanyName', '']
result = df.groupby([lambda idx: idx.month, 'CompanyName']).agg({df.columns[1]: sum}).reset_index()
result.columns = ['Month', 'CompanyName', 'counts']
pivot_table = result.pivot(index='CompanyName', columns='Month', values='counts')
colors = ["#75968f", "#a5bab7", "#c9d9d3", "#e2e2e2", "#dfccce",
"#ddb7b1", "#cc7878", "#933b41", "#550b1d" ]
month = []
company = []
color = []
rate = []
for y in pivot_table.index:
for m in pivot_table.columns:
month.append(m)
company.append(y)
num_calls = pivot_table.loc[y, m]
rate.append(num_calls)
color.append(colors[min(int(num_calls)-2, 8)])