The DLL was originally written in D2007 and needed a quick, panic TStringList call (yes, it was one of those “I’m sure to regret”; though all the calls to the DLL, made by several modules, are all made by Delphi code and I wrongly presumed/hoped backwards compatibility when XE came out).
So now I’m moving the DLL to XE5 (& thus Unicode) and must maintain the call for compatibility. The worst case is I simply write a new DLL only for XE while keeping the old one for legacy, but feel there should be no reason why XE couldn’t deconstruct/overrride to an {ANSI} TStringList parameter. But my Delphi behind-the-scenes knowledge is not robust and a couple of attempts have not succeeded.
Here is the DLL call – it takes a list of file paths and in this stripped-down code, simply adds each string to an internal list (that is all the DLL does with the parameter, a single read-only reference):
function ViewFileList ( lstPaths: TStringList): Integer; Export; Stdcall;
begin
for iCount := 0 to lstPaths.Count - 1 do
lstInternal.Add(lstPaths.strings[iCount]);
end;
What I found is that when I compiled this in XE5, that lstPaths.Count is correct, so the basic structure aligns. But the strings were garbage. It seems the mismatch would be two-fold: (a) the string content naturally is being interpreted as two-bytes per character; (b) there is no Element size (at position -10) and code page (at position -12; so yes, garbage strings). I am also vaguely aware of behind-the-scenes memory management, though I only do read-only access. But the actual string pointers themselves should be correct (??) and thus is there a way to coerce my way through?
So, regardless of whether I have any of that right, is there any solution? Thanks in advance.
David and Jerry already told you what you should do - re-write the DLL to do the right thing when it comes to passing interop-safe data across module boundaries. However, to answer your actual question:
the actual string pointers themselves should be correct (??) and thus is there a way to coerce my way through?
So, regardless of whether I have any of that right, is there any solution?
You can try the following. It is dangerous, but it should work, if a re-write is not an option for you at this time:
// the ASSUMPTION here is that the caller has been compiled in D2007 or earlier,
// and thus is passing an AnsiString-based TStringList object. When this DLL is
// compiled in Delphi 2009 or later, TStringList is UnicodeString-based instead,
// so we have to re-interpret the data a little.
//
// The basic structure of TStringList itself should be the same, just the string
// content is different. For backwards compatibility, the refcnt and length
// fields of the StrRec record found in every AnsiString/UnicodeString payload
// are still at the same offsets. Delphi 2009 added some new fields, but we can
// ignore those here.
//
// Of course, XE is the version that removed the RTL support code for the {$STRINGCHECKS}
// compiler directive, which handled all of these details in Delphi 2009 and 2010
// when users were first migrating to Unicode. But in XE, we'll have to deal with
// it manually.
//
// These assumptions may change in future versions, but lets deal with that if/when
// the time comes...
function ViewFileList ( lstPaths: TStringList): Integer; Export; Stdcall;
{$IFDEF UNICODE}
var
tmp: AnsiString;
{$ENDIF}
begin
for iCount := 0 to lstPaths.Count - 1 do
begin
{$IFDEF UNICODE}
// the DLL is being compiled in Delphi 2009 or later...
//
// the Length(String) function simply returns the value of the string's
// StrRec.length field, which fortunately is in the same location in
// both pre-2009 AnsiString and 2009+ AnsiString/UnicodeString, and in
// this case will reflect the number of AnsiChar elements in the source
// AnsiString. We cannot simply typecast a "UnicodeString" directly to
// a PAnsiChar, nor can we typecast a PWideChar to a PAnsiChar, but we
// can typecast a string to a Pointer first and then cast that to a
// PAnsiChar. This code is assuming that it can safely get a pointer to
// the source AnsiString's underlying character data to make a local
// copy of it that can then be added to the internal list normally.
//
// Where this MIGHT fail is if the source AnsiString contains a reference
// to a string literal (StrRec.refcnt=-1) for its character data, in
// which case the RTL will try to copy the character data when assigning
// the source string to a variable, such as the one the compiler is
// likely to generate for itself to receive the TStringList.Strings[]
// property value before it can be casted to a Pointer. If that happens,
// this is likely to crash when the RTL tries to copy too many bytes from
// the source AnsiString! You can use the StringRefCount() function to
// detect that condition and do something else, if needed.
//
// But, if the source AnsiString is a normal allocated string (the usual
// case), then this should work OK. Even with the compiler-generated
// variable in play, the compiler should simply bump the reference count
// of the source AnsiString, without affecting the underlying character
// data, just long enough for this code to copy the data and release the
// reference count...
//
SetString(tmp, PAnsiChar(Pointer(lstPaths.strings[iCount])), Length(lstPaths.strings[iCount]) * SizeOf(AnsiChar));
lstInternal.Add(tmp);
{$ELSE}
// the DLL is being compiled in Delphi 2007 or earlier, so just add the
// source AnsiString as-is and let the RTL do its work normally...
//
lstInternal.Add(lstPaths.strings[iCount]);
{$ENDIF}
end;
end;