The problem is: Given a string s and a dictionary of words dict, determine if s can be segmented into a space-separated sequence of one or more dictionary words.
For example, given s = "hithere", dict = ["hi", "there"].
Return true because "hithere" can be segmented as "leet code".
My implementation is as below. This code is ok for normal cases. However, it suffers a lot for input like:
s = "aaaaaaaaaaaaaaaaaaaaaaab", dict = {"aa", "aaaaaa", "aaaaaaaa"}.
I want to memorize the processed substrings, however, I cannot done it right. Any suggestion on how to improve? Thanks a lot!
class Solution {
public:
bool wordBreak(string s, unordered_set<string>& wordDict) {
int len = s.size();
if(len<1) return true;
for(int i(0); i<len; i++) {
string tmp = s.substr(0, i+1);
if((wordDict.find(tmp)!=wordDict.end())
&& (wordBreak(s.substr(i+1), wordDict)) )
return true;
}
return false;
}
};
In your code, you are not using dynamic programming because you are not remembering the subproblems that you have already solved.
You can enable this remembering, for example, by storing the results based on the starting position of the string s
within the original string, or even based on its length (because anyway the strings you are working with are suffixes of the original string, and therefore its length uniquely identifies it). Then, in the beginning of your wordBreak
function, just check whether such length has already been processed and, if it has, do not rerun the computations, just return the stored value. Otherwise, run computations and store the result.
Note also that your approach with unordered_set
will not allow you to obtain the fastest solution. The fastest solution that I can think of is O(N^2) by storing all the words in a trie (not in a map!) and following this trie as you walk along the given string. This achieves O(1) per loop iteration not counting the recursion call.