if I record a series of frequencies beeps into a buffer, for example:
Hey, this is an update, I've added a code that shows how I find the first delimiter in the sound buffer that I check. If I record 5 seconds of a buffer(I record into a stream buffer and not a file) The first snippet takes something like 30 seconds to analyze the index where the start delimiter starts at. I thinks it is very newbie...must find a better solution. thanks (every delimiter is 0.2 seconds duration) and it's like that - Start delimiter = 12KHz, 1's = 13k, 0's = 14k, End delimiter = 15k
double max_power = 0;
int max_power_index = 0;
double DelimiterSamplesCount = SampleRate * DelimiterTime;
float[] samples32array = samples32.ToArray();
//Searching For Delimiter
for (int i = 0; i < (samples32array.Length); i++) //Delimiter Samples Length = SampleRate*DelimiterTimeLength,( i.e: 44100*0.2=8820 samples)
{
if ((i + (int)DelimiterSamplesCount - 1) > samples32array.Length) break;
double power = Goertzel.GoertzelFilter(samples32array, StartDelimiterFreq, i, i + (int)DelimiterSamplesCount - 1);
if(power > max_power)
{
max_power = power;
max_power_index = i;
}
}
My Goertzel is like that:
public static double GoertzelFilter(float[] samples, double freq, int start, int end)
{
double sPrev = 0.0;
double sPrev2 = 0.0;
int i;
double normalizedfreq = freq / 44100;
double coeff = 2 * Math.Cos(2 * Math.PI * normalizedfreq);
for (i = start; i < end; i++)
{
double s = samples[i] + coeff * sPrev - sPrev2;
sPrev2 = sPrev;
sPrev = s;
}
double power = sPrev2 * sPrev2 + sPrev * sPrev - coeff * sPrev * sPrev2;
return power;
}
If you know the set of frequencies and the durations, then a set of sliding Goertzel filters is a good start to building a simple demodulator. Comparing and scanning for for a peak difference between these filters is a better decision criteria than just checking for a certain magnitude output.