I have written a non recursive solution to the Ackermann function, it seems to work perfectly and work faster than the common recursive solution. So I am confused as to why it is a non primitive recursive function if it can be solved iteratively? Could anyone tell me if I have misunderstood something about what primitive recursive functions are or who should I talk to about this to get an answer?
Below is the Java code:
import java.util.Scanner;
import java.util.ArrayList;
public class ackermann {
public static void main(String[] args){
Scanner in = new Scanner(System.in);
System.out.println("Enter m:");
int m = in.nextInt();
System.out.println("Enter n:");
int n = in.nextInt();
ack(m, n);
}
public static void ack(int inM, int inN){
if(inM < 0 || inN < 0) return;
ArrayList<ArrayList<Integer>> arr = new ArrayList<ArrayList<Integer>>();
for(int m = 0; m <= inM; m++){
arr.add(new ArrayList<Integer>());
}
Boolean done = false;
while(done == false){
for(int m = 0; m <= inM; m++){
int n = arr.get(m).size();
int a = 0;
if(m == 0) a = n + 1;
else if(n == 0){
if(arr.get(m - 1).size() <= 1) break;
a = arr.get(m - 1).get(1);
} else {
int k = arr.get(m).get(n - 1);
if(arr.get(m - 1).size() <= k) break;
a = arr.get(m - 1).get(k);
}
arr.get(m).add(a);
if(m == inM && n == inN){
System.out.println("Ack(" + inM + ", " + inN + ") = " + a);
done = true;
break;
}
}
}
}
}
Primitive recursive functions can be implemented using only assignment, +, and definite loops. By this I mean loops of the form:
for(int i = 0; i < n; i++) { ... }
Where n is a variable that isn't changed in the loop body. To get Ackermann's function, which majorizes all primitive recursive functions, one needs to add either a goto command or indefinite loops like your while loop.