Search code examples
javaalgorithmpathpath-findinga-star

A* Pathfinding algorithm giving weird path (Text Map - No GUI)


I am trying to solve my A* Path finding algorithm. I have three classes: Menu, Grid, and Node.

If you run my program, you will see that it prints an unusual spiral, skippy, bunny hopping path. I believe the unexpected behaviour has something to do with the following function:

printAStarPath(int startx, int starty, int endx, int endy)

In my opinion, I think the problem has something to do with setting parent nodes improperly. I am pretty sure Node and Menu work properly.

Input:

The menu function basically manages the user input. The user can add walls, start location, and end location, and the size of the grid. I also included some tests in the menu (so you don't always have type everything again every time you test). The printAStarPath(...) function takes in a start x,y location and an end x,y location.

Output:

I want this to print a grid like so:

[ ][ ][ ][ ][ ][ ][ ]
[ ][ ][ ][X][ ][ ][ ]
[ ][S][ ][X][ ][E][ ]
[ ][ ][*][X][*][ ][ ]
[ ][ ][ ][*][ ][ ][ ]

Unfortunately, I get this craziness:

[ ][ ][ ][ ][ ][ ][ ]
[ ][ ][ ][X][ ][ ][*]
[ ][S][ ][X][ ][E][*]
[ ][ ][*][X][ ][ ][*]
[ ][ ][ ][*][*][*][ ]

Another example of what happens with different input:

[E][ ][ ][ ][ ]
[ ][*][ ][ ][*]
[ ][ ][X][ ][*]
[ ][ ][ ][ ][*]
[ ][*][ ][*][S]

Some of my grids look like arrows pointing down-right-ward. Some look like they go down-right then spiral up and to the left.


Summary:

I am using the A* path finding method and I am calculating the Heuristic (or H-cost) by the Manhattan Method. I use recursion to get my exact G-cost as well as tracing back from the end location to the start location.

Here's the article that I followed.


Here's the code:

Menu:

package pathFinding;

import java.util.*;

public class Menu {
    
    private Grid board;
    
    public Menu(){
        board = new Grid(0, 0);
    }//end constructor
    
    static public void main (String[] args){
        
        Menu pft = new Menu();
        
        pft.boardMenu();
        
        System.out.print("process terminated.");
        
    }//end main
    
    public void boardMenu(){
        // very user error prone !
        boolean kg = true;
        Scanner in = new Scanner(System.in);
        int input;
        
        while(kg){
            input = -1;
            System.out.print("\n\n\n\n");
            System.out.print(">>> Hi there,"
                         + "\n(0) quit"
                         + "\n(1) test 1"
                         + "\n(2) test 2"
                         + "\n(3) new board"
                         + "\n>>> ");
            input = in.nextInt();
            
            if (input == 3){
                this.initUserData();
            } else if (input == 0){
                kg = false;
            } else if (input == 1){
                board.setSize(7, 5);
                board.setCollidable(3, 1);
                board.setCollidable(3, 2);
                board.setCollidable(3, 3);
                board.printAStarPath(1, 2, 5, 2);
            } else if (input == 2){
                board.setSize(25, 25);
                board.setCollidable(5, 4);
                board.setCollidable(4, 5);
                board.setCollidable(3, 3);
                board.printAStarPath(15, 15, 4, 4);
            }
        } // end while
    } // end boardMenu
    
    public void initUserData(){
        boolean kgTmp = true;
        int xTmp, yTmp, iTmp, jTmp = 0;
        
        // initiate input device
        Scanner in = new Scanner(System.in);
        
        // 0: determine board size
        System.out.print("\nBoard width: ");
        xTmp = in.nextInt();
        System.out.print("\nBoard height: ");
        yTmp = in.nextInt();
        board.setSize(xTmp, yTmp);
        
        // 1: determine obstruction locations
        kgTmp = true;
        while(kgTmp){
            System.out.print("\nObstruction x Loc: ");
            xTmp = in.nextInt();
            System.out.print("\nObstruction y Loc: ");
            yTmp = in.nextInt();
            board.setCollidable(xTmp, yTmp);
            
            System.out.print("\nMore Obstructions?(0=no;1=yes): ");
            if(in.nextInt() == 0)
                kgTmp = false;
        } // end while
        
        // 2: determine start location
        System.out.print("\nStart x Loc: ");
        xTmp = in.nextInt();
        System.out.print("\nStart y Loc: ");
        yTmp = in.nextInt();
        
        // 3: determine end location
        System.out.print("\nEnd x Loc: ");
        iTmp = in.nextInt();
        System.out.print("\nEnd y Loc: ");
        jTmp = in.nextInt();
        
        System.out.println("\nredy for astar");
        // 4: determine and print A* path
        board.printAStarPath(xTmp, yTmp, iTmp, jTmp);
        System.out.println("\nastar shud be done?");
        
    } // end initBoardData

} // end class def

Grid:

package pathFinding;

import java.util.*;

public class Grid {
    
    private List<List<Node>> grid;
    List<List<Integer>> path;
    private int width;
    private int height;
    
    //------------------------------------------------------------------------
    // Name: Constructor
    // Desc: Takes in a width & height. Initializes stuff.
    //------------------------------------------------------------------------
    public Grid(int width, int height){
        
        grid = new ArrayList<List<Node>>();
        path = new ArrayList<List<Integer>>();
        this.width = width;
        this.height = height;
        initGrid(width, height);
        
    } // end constructor
    
    //------------------------------------------------------------------------
    // Name: initGrid
    // Desc: initializes the grid with data
    //------------------------------------------------------------------------
    public void initGrid(int w, int h){
        
        // add columns
        for (int i=0;i<w;i++)
            grid.add(new ArrayList<Node>());
        
        // fill grid with nodes
        for (int i=0;i<w;i++)
            for (int j=0;j<h;j++)
                grid.get(i).add(new Node(i, j));
        
    } // end initGrid
    
    //------------------------------------------------------------------------
    // Name: setSize
    // Desc: Sets the size of the grid
    //------------------------------------------------------------------------
    public void setSize(int w, int h){
        this.width = w;
        this.height = h;
        
        // update the nodes
        clearAll();
        initGrid(width, height);
        
    } // end setSize
    
    //------------------------------------------------------------------------
    // Name: clearAll
    // Desc: Clears any data in grid and path
    //------------------------------------------------------------------------
    public void clearAll(){
        // removes all rows/columns/nodes
        grid.clear();
        path.clear();
    } // end clearAll
    
    //------------------------------------------------------------------------
    // Name: printGrid
    // Desc: Prints the whole grid
    //------------------------------------------------------------------------
    public void printGrid(){
        // prints every node's value
        
        // loop thru columns
        for (int j=0;j<height;j++){
            // thru row
            for (int i=0;i<width;i++)
                grid.get(i).get(j).printText();
            System.out.println();
        } // end j loop
    } // end printGrid
    
    //------------------------------------------------------------------------
    // Name: setCollidable
    // Desc: Sets a node at x,y to collidable
    //------------------------------------------------------------------------
    public void setCollidable(int x, int y){
        
        // makes a node at x,y collidable
        grid.get(x).get(y).setCollidable(true);
        grid.get(x).get(y).setText("[X]");
        
    } // end setCollidable
    
    //------------------------------------------------------------------------
    // Name: printAStarPath
    // Desc: Finds and prints the path from start to end
    // Errr: This function only almost works :(   ... oh well i tried
    //------------------------------------------------------------------------
    public void printAStarPath(int startx, int starty, int endx, int endy){
        
        //========================================================
        // PSEUDO CODE BRO.
        //========================================================
        // 1: Declarations
        //    PART ONE
        // 2: Initialize:
        //    1: Drop current node from openList
        //       Add current node to closedList
        //    2: Set current node as parent for each neighbor
        //       Add neighbors to openList
        //
        //    PART TWO
        // 3: Loop: (thru openList)
        //
        //       (openList should contain neighbors of closedList nodes here)
        //
        //    EXAMPLE:
        //
        //    n n n n n
        //    n n n n n>
        //    n S * * n-> E      (the closest star is the current node)
        //    n n n n n>
        //    n n n n n
        //
        //    1: Set neighbor w/ lowest F-cost from the openList as current node
        //    2: Add this new node to the closedList
        //       Remove from openList
        //    3: Loop (for each neighbor):
        //       1: Add openlist'less neighbors to openList
        //          Set current node as parent for neighbor node
        //       2: If neighbor is already on the openList:
        //          1: Get G-cost of neighbor IF: neighbor's parent is current node's parent (default)
        //                                    IF: neighbor's parent is current node
        //          2: If the 2nd G-cost is less:
        //             1: set neighbor's parent to current node
        //             2: recalculate F and G costs (possibly you don't need this)
        //    4: Stop: IF: end node is in closedList or,
        //             IF: end node is not in closedList and openList is empty
        // 4: Save/Return Path
        // 5: Print Results: (if you wanna print)
        //    1: Fill grid with proper symbols
        //    2: Print grid
        
        
        
        //===========//
        //     1     //
        //===========//
        List<List<Integer>> closedList = new ArrayList<List<Integer>>();
        List<List<Integer>> openList   = new ArrayList<List<Integer>>();
        int x                          = startx;
        int y                          = starty;
        int gOrig                      = 0;
        int gThru                      = 0;
        boolean condition              = false;
        
        //===========//
        //     2     //
        //===========//
        if (closedList.contains(Arrays.asList(x, y)) == false)
            closedList.add(Arrays.asList(x, y));
        for (int i=x-1;i<x+2;i++){
            for (int j=y-1;j<y+2;j++){
                if (i>=0 && i<this.width){
                    if (j>=0 && j<this.height){
                        if (closedList.contains(Arrays.asList(i, j)) == false){
                            if (grid.get(i).get(j).getCollidable() == false){
                                //-----------------------------------------------------

                                // setting parent
                                grid.get(i).get(j).setParent( grid.get(x).get(y) );
                                // adding to openList
                                openList.add(Arrays.asList(i, j));

                                //-----------------------------------------------------
                            }//end if (check collidable)
                        }//end if (in closedList?)
                    }//end if (check height)
                }//end if (check width)
            }//end j loop
        }//end i loop
        
        
        //===========//
        //     3     //
        //===========//
        while(condition == false){
            
            
            //===========//
            //    3.1    //
            //===========//
            // selecting lowest F-cost node
            x = getLowestFCostNodePos(openList, endx, endy)[0];
            y = getLowestFCostNodePos(openList, endx, endy)[1];
            
            //===========//
            //    3.2    //
            //===========//
            closedList.add(Arrays.asList(x, y));
            openList.remove(Arrays.asList(x, y));
            
            //===========//
            //    3.3    //
            //===========//
            for (int i=x-1;i<x+2;i++){
                for (int j=y-1;j<y+2;j++){
                    if (i>=0 && i<this.width){
                        if (j>=0 && j<this.height){
                            if (closedList.contains(Arrays.asList(i, j)) == false){
                                if (grid.get(i).get(j).getCollidable() == false){
                                    //-----------------------------------------------------

                                    if (openList.contains(Arrays.asList(i, j)) == false){
                                        // setting parent
                                        grid.get(i).get(j).setParent( grid.get(x).get(y) );
                                        // adding to openList
                                        openList.add(Arrays.asList(i, j));
                                    }//end if (in openList?)
                                    
                                    else{
                                        // getting G-costs
                                        gOrig = grid.get(i).get(j).getG();
                                        grid.get(i).get(j).setParent(grid.get(x).get(y));
                                        gThru = grid.get(i).get(j).getG();
                                        
                                        // comparing G-costs
                                        if (gOrig < gThru){
                                            // revert parent back the way it was
                                            grid.get(i).get(j).setParent(grid.get(x).get(y).getParent());
                                        }//end if (G-costs)
                                        
                                        // adding to openList
                                        openList.add(Arrays.asList(i, j));
                                    }//end else (in openList?)

                                    //-----------------------------------------------------
                                }//end if (check collidable)
                            }//end if (in closedList?)
                        }//end if (check height)
                    }//end if (check width)
                }//end j loop
            }//end i loop
            
            
            //===========//
            //    3.5    //
            //===========//
            if (openList.size() == 0){
                condition = true;
                System.out.print("\nNo Path.\n");
            } else if (closedList.contains(Arrays.asList(endx, endy)) == true){
                condition = true;
                System.out.print("\nPath Found.\n");
            }
            
            
        }//end while loop (condition)
        
        
        //===========//
        //     4     //
        //===========//
        if (openList.size() > 0)
            getNodePath(grid.get(endx).get(endy));
        
        
        //===========//
        //    5.1    //
        //===========//
        if (openList.size() > 0)
            for (int i=0; i<path.size(); i++){
                // setting symbols
                grid.get(path.get(i).get(0)).get(path.get(i).get(1)).setText("[*]");
            }
        // setting start/end
        grid.get(startx).get(starty).setText("[S]");
        grid.get(endx).get(endy).setText("[E]");
        
        
        //===========//
        //    5.2    //
        //===========//
        printGrid();
        
        
    } // end printAStarPath


    //------------------------------------------------------------------
    //  Name: getNodePath
    //  Desc: returns coordinates of path (in order) from start to end
    //------------------------------------------------------------------
    public void getNodePath(Node node){
        
        // redo this function with the parent of node
        if (node.getParent() != null){
            // add a coordinate to path list
            this.path.add(0, Arrays.asList(node.getX(), node.getY()));
            // recur
            getNodePath(node.getParent());
        }//end if (recursive)
        
    } // end getNodePath
    
    
    //------------------------------------------------------------------
    //  Name: getLowestFCostNodePos
    //  Desc: returns coordinates of node with lowest F-cost in openList
    //------------------------------------------------------------------
    public int[] getLowestFCostNodePos(List<List<Integer>> openList, int endx, int endy){
        // Declarations
        int xTmp = 0;
        int yTmp = 0;
        int fMin = 1000000;
        int[] cords = new int[2];
        
        // look for lowest F-cost node
        for (int i=0;i<openList.size();i++){
            // setting possible position
            xTmp = openList.get(i).get(0);
            yTmp = openList.get(i).get(1);
            
            // compare F-values
            if (fMin > grid.get(xTmp).get(yTmp).getF(endx, endy)){
                // set temporary F-cost
                fMin = grid.get(xTmp).get(yTmp).getF(endx, endy);
            }//end if (compare F)
        }//end i loop
        
        // just in case
        if (openList.size() > 0){
            cords[0] = xTmp;
            cords[1] = yTmp;
            return cords;
        } else{
            System.out.print("openList is empty!");
            return null;
        }
        
    } // end getLowestFCostNodePos

} // end class def

Node:

package pathFinding;

public class Node {
    
    private String text;
    private int x;
    private int y;
    private boolean collidable;
    private Node parent;
    
    public Node(int x, int y){
        
        text = "[ ]";
        this.x = x;
        this.y = y;
        collidable = false;
        parent = null;
        
    } // end constructor
    
    public void setText(String text){
        this.text = text;
    } // end setText
    
    public int getX(){
        return this.x;
    } // end getX

    public int getY(){
        return this.y;
    } // end getY
    
    public void setCollidable(boolean arg0){
        collidable = arg0;
    } // end setCollidable
    
    public boolean getCollidable(){
        return collidable;
    } // end getCollidable
    
    public void setParent(Node n){
        parent = n;
    } // end setParent
    
    public Node getParent(){
        // for parent location: return new int[] {parent.getX(), parent.getY()};
        return parent;
    } // end getParent
    
    public void printText(){
        System.out.print(this.text);
    } // end printText
    
    public int getF(int endx, int endy){
        return this.getG() + this.getH(endx, endy);
    } // end getF
    
    public int getG(){
        // calculate exact distance from start
        if (parent != null){
            if (parent.getX()-this.x == 0 || parent.getY()-this.y == 0)
                return parent.getG() + 10;
            else
                return parent.getG() + 14;
        }//end if
        return 0;
    } // end getG
    
    public int getH(int endx, int endy){
        // calculate estimated distance to end (Manhattan distance)
        return (Math.abs(this.x-endx) + Math.abs(this.y-endy))*10;
    } // end getH

} // end class def

EDIT:

I came back to this code after a while and I just tested a new graph which, sadly, gives me this:

[ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
[ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
[ ][ ][ ][ ][ ][X][ ][ ][ ][ ]
[ ][ ][X][X][X][X][ ][*][ ][ ]
[ ][ ][*][*][E][X][ ][ ][*][ ]
[ ][*][X][X][X][X][ ][ ][ ][S]
[ ][ ][*][ ][ ][ ][ ][ ][ ][ ]
[ ][ ][ ][*][ ][ ][ ][ ][ ][ ]
[ ][ ][ ][ ][*][ ][*][ ][ ][ ]
[ ][ ][ ][ ][ ][*][ ][ ][ ][ ]

Can anyone figure out why this is happening?


Solution

  • Ok, so I've gone through your code and with the help of other's comments here I've managed to get it to work. I'm only posting the changed methods:

    Grid.getLowestFCostNodePos doesn't keep track of the X and Y values of the node with the lowest F:

    public int[] getLowestFCostNodePos(List<List<Integer>> openList, int endx, int endy){
        // Declarations
        int fMin = 1000000;
        int[] cords = new int[2];
        int minX = -1;
        int minY = -1;
    
        // look for lowest F-cost node
        for (int i=0;i<openList.size();i++){
            // setting possible position
            int xTmp = openList.get(i).get(0);
            int yTmp = openList.get(i).get(1);
    
            int fCandidate = grid.get(xTmp).get(yTmp).getF(endx, endy);
            // compare F-values
            if (fMin > fCandidate) {
                // set temporary F-cost
                fMin = fCandidate;
                minX = xTmp;
                minY = yTmp;
            }//end if (compare F)
        }//end i loop
    
        // just in case
        if (openList.size() > 0){
            cords[0] = minX;
            cords[1] = minY;
            return cords;
        } else{
            System.out.print("openList is empty!");
            return null;
        }
    
    } // end getLowestFCostNodePos
    

    Node.getG() Node.getH()` doesn't use the same units (H considers a step worth of 1 and G a step worth of 10 for N/S/E/W steps 14 for diagonal steps) and H doesn't consider diagonal steps. I normalised this to make one step always cost 1:

    public int getG(){
        // calculate exact distance from start
        if (parent != null){
            return parent.getG() + 1;
        }//end if
        return 0;
    } // end getG
    
    public int getH(int endx, int endy){
        // calculate estimated distance to end
        // Since we can walk diagonally we can cover the smallest of
        // dx and dy while covering the longest. The distance is therefore
        // the largest of the two
        return Math.max(Math.abs(this.x - endx), Math.abs(this.y - endy));
    } // end getH
    

    Test board 1:

    [ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][X][ ][ ][ ]
    [ ][S][ ][X][ ][E][ ]
    [ ][ ][*][X][*][ ][ ]
    [ ][ ][ ][*][ ][ ][ ]
    

    Test board 2:

    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][X][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][E][X][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][X][*][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][*][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][*][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][*][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][*][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][*][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][*][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][*][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][*][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][*][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][S][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]
    

    Custom board:

    [S][X][ ][ ][ ]
    [*][X][ ][*][ ]
    [*][X][*][X][*]
    [*][X][*][X][*]
    [ ][*][ ][X][E]
    

    That said, you should consider implementing a Point class instead of using an ArrayList everywhere and use local variables and helper methods because your code is extremely verbose and cumbersome to read.

    Lines like these give me a headache:

    grid.get(path.get(i).get(0)).get(path.get(i).get(1)).setText("[*]");
    

    Changing ArrayList<Integer> for a custom Point class and using two local variables greatly improves readability:

    Point point = path.get(i);
    List<Node> row = grid.get(point.getX());
    row.get(point.getY()).setText("[*]");
    

    If you were to add an utility method to Grid for getting a specific Node from a Point you could reduce it to:

    getNode(path.get(i)).setText("[*]");
    

    And that method could be used in a lot of places to improve readability.