How can I pause a genetic algorithm in Encog 3.4 (the version currently under development in Github)?
I am using the Java version of Encog.
I am trying to modify the Lunar example that comes with Encog. I want to pause/serialize the genetic algorithm and then continue/deserialize at a later stage.
When I call train.pause();
it simply returns null
- which is pretty obvious from the code since the method always returns null
.
I would assume that it would be pretty straight forward since there can be a scenario in which I want to train a neural network, use it for some predictions and then continue training with the genetic algorithm as I get more data before resuming with more predictions - without having to restart the training from the beginning.
Please note that I am not trying to serialize or persist a neural network but rather the entire genetic algorithm.
Not all trainers in Encog support the simple pause/resume. If they do not support it, they return null, like this one. The genetic algorithm trainer is much more complex than a simple propagation trainer that supports pause/resume. To save the state of the genetic algorithm, you must save the entire population, as well as the scoring function (which may or may not be serializable). I modified the Lunar Lander example to show you how you might save/reload your population of neural networks to do this.
You can see that it trains 50 iterations, then round-trips (load/saves) the genetic algorithm, then trains 50 more.
package org.encog.examples.neural.lunar;
import java.io.File;
import java.io.IOException;
import org.encog.Encog;
import org.encog.engine.network.activation.ActivationTANH;
import org.encog.ml.MLMethod;
import org.encog.ml.MLResettable;
import org.encog.ml.MethodFactory;
import org.encog.ml.ea.population.Population;
import org.encog.ml.genetic.MLMethodGeneticAlgorithm;
import org.encog.ml.genetic.MLMethodGenomeFactory;
import org.encog.neural.networks.BasicNetwork;
import org.encog.neural.pattern.FeedForwardPattern;
import org.encog.util.obj.SerializeObject;
public class LunarLander {
public static BasicNetwork createNetwork()
{
FeedForwardPattern pattern = new FeedForwardPattern();
pattern.setInputNeurons(3);
pattern.addHiddenLayer(50);
pattern.setOutputNeurons(1);
pattern.setActivationFunction(new ActivationTANH());
BasicNetwork network = (BasicNetwork)pattern.generate();
network.reset();
return network;
}
public static void saveMLMethodGeneticAlgorithm(String file, MLMethodGeneticAlgorithm ga ) throws IOException
{
ga.getGenetic().getPopulation().setGenomeFactory(null);
SerializeObject.save(new File(file),ga.getGenetic().getPopulation());
}
public static MLMethodGeneticAlgorithm loadMLMethodGeneticAlgorithm(String filename) throws ClassNotFoundException, IOException {
Population pop = (Population) SerializeObject.load(new File(filename));
pop.setGenomeFactory(new MLMethodGenomeFactory(new MethodFactory(){
@Override
public MLMethod factor() {
final BasicNetwork result = createNetwork();
((MLResettable)result).reset();
return result;
}},pop));
MLMethodGeneticAlgorithm result = new MLMethodGeneticAlgorithm(new MethodFactory(){
@Override
public MLMethod factor() {
return createNetwork();
}},new PilotScore(),1);
result.getGenetic().setPopulation(pop);
return result;
}
public static void main(String args[])
{
BasicNetwork network = createNetwork();
MLMethodGeneticAlgorithm train;
train = new MLMethodGeneticAlgorithm(new MethodFactory(){
@Override
public MLMethod factor() {
final BasicNetwork result = createNetwork();
((MLResettable)result).reset();
return result;
}},new PilotScore(),500);
try {
int epoch = 1;
for(int i=0;i<50;i++) {
train.iteration();
System.out
.println("Epoch #" + epoch + " Score:" + train.getError());
epoch++;
}
train.finishTraining();
// Round trip the GA and then train again
LunarLander.saveMLMethodGeneticAlgorithm("/Users/jeff/projects/trainer.bin",train);
train = LunarLander.loadMLMethodGeneticAlgorithm("/Users/jeff/projects/trainer.bin");
// Train again
for(int i=0;i<50;i++) {
train.iteration();
System.out
.println("Epoch #" + epoch + " Score:" + train.getError());
epoch++;
}
train.finishTraining();
} catch(IOException ex) {
ex.printStackTrace();
} catch (ClassNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
int epoch = 1;
for(int i=0;i<50;i++) {
train.iteration();
System.out
.println("Epoch #" + epoch + " Score:" + train.getError());
epoch++;
}
train.finishTraining();
System.out.println("\nHow the winning network landed:");
network = (BasicNetwork)train.getMethod();
NeuralPilot pilot = new NeuralPilot(network,true);
System.out.println(pilot.scorePilot());
Encog.getInstance().shutdown();
}
}