In order to obtain a graphical representation of the behaviour of a fluid it is common practice to plot its streamlines.
For a given two-dimensional fluid with speed components u = Kx and v = -Ky (where K is a constant, for example: K = 5), the streamline equation can be obtained integrating the flow velocity field components as follows:
Streamline equation: ∫dx/u = ∫dy/v
The solved equation looks like this: A = B + C (where A is the solution of the first integral, B is the solution of the second integral and C is an integration constant).
Once we have achieved this, we can start plotting a streamline by simply assigning a value to C, for example: C = 1, and plotting the resulting equation. That would generate a single streamline, so in order to get more of them you need to iterate this last step assigning a different value of C each time.
I have successfully plotted the streamlines of this particular flow by letting matlab integrate the equation symbolically and using ezplot
to produce a graphic as follows:
syms x y
K = 5; %Constant.
u = K*x; %Velocity component in x direction.
v = -K*y; %Velocity component in y direction.
A = int(1/u,x); %First integral.
B = int(1/v,y); %Second integral.
for C = -10:0.1:10; %Loop. C is assigned a different value in each iteration.
eqn = A == B + C; %Solved streamline equation.
ezplot(eqn,[-1,1]); %Plot streamline.
hold on;
end
axis equal;
axis([-1 1 -1 1]);
This is the result:
The problem is that for some particular regions of the flow ezplot
is not accurate enough and doesn't handle singularities very well (asymptotes, etc.). That's why a standard "numeric" plot
seems desirable, in order to obtain a better visual output.
The challenge here is to convert the symbolic streamline solution into an explicit expression that would be compatible with the standard plot
function.
I have tried to do it like this, using subs
and solve
with no success at all (Matlab throws an error).
syms x y
K = 5; %Constant.
u = K*x; %Velocity component in x direction.
v = -K*y; %Velocity component in y direction.
A = int(1/u,x); %First integral.
B = int(1/v,y); %Second integral.
X = -1:0.1:1; %Array of x values for plotting.
for C = -10:0.1:10; %Loop. C is assigned a different value in each iteration.
eqn = A == B + C; %Solved streamline equation.
Y = subs(solve(eqn,y),x,X); %Explicit streamline expression for Y.
plot(X,Y); %Standard plot call.
hold on;
end
This is the error that is displayed on the command window:
Error using mupadmex
Error in MuPAD command: Division by zero.
[_power]
Evaluating: symobj::trysubs
Error in sym/subs>mupadsubs (line 139)
G =
mupadmex('symobj::fullsubs',F.s,X2,Y2);
Error in sym/subs (line 124)
G = mupadsubs(F,X,Y);
Error in Flow_Streamlines (line 18)
Y = subs(solve(eqn,y),x,X); %Explicit
streamline expression for Y.
So, how should this be done?
Since you are using subs
many times, matlabFunction
is more efficient. You can use C
as a parameter, and solve for y
in terms of both x
and C
. Then the for
loop is very much faster:
syms x y
K = 5; %Constant.
u = K*x; %Velocity component in x direction.
v = -K*y; %Velocity component in y direction.
A = int(1/u,x); %First integral.
B = int(1/v,y); %Second integral.
X = -1:0.1:1; %Array of x values for plotting.
syms C % C is treated as a parameter
eqn = A == B + C; %Solved streamline equation.
% Now solve the eqn for y, and make it into a function of `x` and `C`
Y=matlabFunction(solve(eqn,y),'vars',{'x','C'})
for C = -10:0.1:10; %Loop. C is assigned a different value in each iteration.
plot(X,Y(X,C)); %Standard plot call, but using the function for `Y`
hold on;
end