I've written a GA to model a handful of stocks (4) over a period of time (5 years). It's impressive how quickly the GA can find an optimal solution to the training data, but I am also aware that this is mainly due to it's tendency to over-fit in the training phase.
However, I still thought I could take a few precautions and and get some kind of prediction on a set of unseen test stocks from the same period.
One precaution I took was: When multiple stocks can be bought on the same day the GA only buys one from the list and it chooses this one randomly. I thought this randomness might help to avoid over-fitting?
Even if over-fitting is still occurring,shouldn't it be absent in the initial generations of the GA since it hasn't had a chance to over-fit yet?
As a note, I am aware of the no-free-lunch theorem which demonstrates ( I believe) that there is no perfect set of parameters which will produce an optimal output for two different datasets. If we take this further, does this no-free-lunch theorem also prohibit generalization?
The graph below illustrates this. ->The blue line is the GA output. ->The red line is the training data (slightly different because of the aforementioned randomness) -> The yellow line is the stubborn test data which shows no generalization. In fact this is the most flattering graph I could produce..
The y-axis is profit, the x axis is the trading strategies sorted from worst to best ( left to right) according to there respective profits (on the y axis)
Some of the best advice I've received so far (thanks seaotternerd) is to focus on the earlier generations and increase the number of training examples. The graph below has 12 training stocks rather than just 4, and shows only the first 200 generations (instead of 1,000). Again, it's the most flattering chart I could produce, this time with medium selection pressure. It certainly looks a little bit better, but not fantastic either. The red line is the test data.
The problem with over-fitting is that, within a single data-set it's pretty challenging to tell over-fitting apart from actually getting better in the general case. In many ways, this is more of an art than a science, but here are some general guidelines:
Bottom line: I think that varying the test cases shows the most promise (although I'm biased, because that's one of my primary areas of research), but it is also the most challenging solution, implementation-wise. So as a simpler fix you can try stopping evolution sooner or increasing your data-set.