Search code examples
statisticsgenetic-algorithmpredictiongeneralization

Cannot generalize my Genetic Algorithm to new Data


I've written a GA to model a handful of stocks (4) over a period of time (5 years). It's impressive how quickly the GA can find an optimal solution to the training data, but I am also aware that this is mainly due to it's tendency to over-fit in the training phase.

However, I still thought I could take a few precautions and and get some kind of prediction on a set of unseen test stocks from the same period.

One precaution I took was: When multiple stocks can be bought on the same day the GA only buys one from the list and it chooses this one randomly. I thought this randomness might help to avoid over-fitting?

Even if over-fitting is still occurring,shouldn't it be absent in the initial generations of the GA since it hasn't had a chance to over-fit yet?

As a note, I am aware of the no-free-lunch theorem which demonstrates ( I believe) that there is no perfect set of parameters which will produce an optimal output for two different datasets. If we take this further, does this no-free-lunch theorem also prohibit generalization?

The graph below illustrates this. ->The blue line is the GA output. ->The red line is the training data (slightly different because of the aforementioned randomness) -> The yellow line is the stubborn test data which shows no generalization. In fact this is the most flattering graph I could produce..

The y-axis is profit, the x axis is the trading strategies sorted from worst to best ( left to right) according to there respective profits (on the y axis) enter image description here

Some of the best advice I've received so far (thanks seaotternerd) is to focus on the earlier generations and increase the number of training examples. The graph below has 12 training stocks rather than just 4, and shows only the first 200 generations (instead of 1,000). Again, it's the most flattering chart I could produce, this time with medium selection pressure. It certainly looks a little bit better, but not fantastic either. The red line is the test data.

enter image description here


Solution

  • The problem with over-fitting is that, within a single data-set it's pretty challenging to tell over-fitting apart from actually getting better in the general case. In many ways, this is more of an art than a science, but here are some general guidelines:

    • A GA will learn to do exactly what you attach fitness to. If you tell it to get really good at predicting one series of stocks, it will do that. If you keep swapping in different stocks to predict, though, you might be more successful at getting it to generalize. There are a few ways to do this. The one that has had perhaps the most promising results for reducing over-fitting is imposing spatial structure on the population and evaluating on different test cases in different cells, as in the SCALP algorithm. You could also switch out the test cases on a time basis, but I've had more mixed results with that sort of an approach.
    • You are correct that over-fitting should be less of a problem early on. Generally, the longer you run a GA, the more over-fitting will be possible. Typically, people tend to assume that the general rules will be learned first, before the rote memorization of over-fitting takes place. However, I don't think I've actually ever seen this studied rigorously - I could imagine a scenario where over-fitting was so much easier than finding general rules that it happens first. I have no idea how common that is, though. Stopping early will also reduce the ability of the GA to find better general solutions.
    • Using a larger data-set (four stocks isn't that many) will make your GA less susceptible to over-fitting.
    • Randomness is an interesting idea. It will definitely hurt the GA's ability to find general rules, but it should also reduce over-fitting. Without knowing more about the specifics of your algorithm, it's hard to say which would win out.
    • That's a really interesting thought about the no free lunch theorem. I'm not 100% sure, but I think it does apply here to some extent - better fitting some data will make your results fit other data worse, by necessity. However, as wide as the range of possible stock behaviors is, it is much narrower than the range of all possible time series in general. This is why it is possible to have optimization algorithms at all - a given problem that we are working with tends produce data that cluster relatively closely together, relative to the entire space of possible data. So, within that set of inputs that we actually care about, it is possible to get better. There is generally an upper limit of some sort on how well you can do, and it is possible that you have hit that upper limit for your data-set. But generalization is possible to some extent, so I wouldn't give up just yet.

    Bottom line: I think that varying the test cases shows the most promise (although I'm biased, because that's one of my primary areas of research), but it is also the most challenging solution, implementation-wise. So as a simpler fix you can try stopping evolution sooner or increasing your data-set.