I have a sparse matrix
from scipy.sparse import *
M = csr_matrix((data_np, (rows_np, columns_np)));
then I'm doing clustering that way
from sklearn.cluster import KMeans
km = KMeans(n_clusters=n, init='random', max_iter=100, n_init=1, verbose=1)
km.fit(M)
and my question is extremely noob: how to print the clustering result without any extra information. I don't care about plotting or distances. I just need clustered rows looking that way
Cluster 1
row 1
row 2
row 3
Cluster 2
row 4
row 20
row 1000
...
How can I get it? Excuse me for this question.
Time to help myself. After
km.fit(M)
we run
labels = km.predict(M)
which returns labels, numpy.ndarray. Number of elements in this array equals number of rows. And each element means that a row belongs to the cluster. For example: if first element is 5 it means that row 1 belongs to cluster 5. Lets put our rows in a dictionary of lists looking this way {cluster_number:[row1, row2, row3], ...}
# in row_dict we store actual meanings of rows, in my case it's russian words
clusters = {}
n = 0
for item in labels:
if item in clusters:
clusters[item].append(row_dict[n])
else:
clusters[item] = [row_dict[n]]
n +=1
and print the result
for item in clusters:
print "Cluster ", item
for i in clusters[item]:
print i