I have a databases table with ~50K rows in it, each row represents a job that need to be done. I have a program that extracts a job from the DB, does the job and puts the result back in the db. (this system is running right now)
Now I want to allow more than one processing task to do jobs but be sure that no task is done twice (as a performance concern not that this will cause other problems). Because the access is by way of a stored procedure, my current though is to replace said stored procedure with something that looks something like this
update tbl
set owner = connection_id()
where available and owner is null limit 1;
select stuff
from tbl
where owner = connection_id();
BTW; worker's tasks might drop there connection between getting a job and submitting the results. Also, I don't expect the DB to even come close to being the bottle neck unless I mess that part up (~5 jobs per minute)
Are there any issues with this? Is there a better way to do this?
Note: the "Database as an IPC anti-pattern" is only slightly apropos here because
Here's what I've used successfully in the past:
MsgQueue table schema
MsgId identity -- NOT NULL
MsgTypeCode varchar(20) -- NOT NULL
SourceCode varchar(20) -- process inserting the message -- NULLable
State char(1) -- 'N'ew if queued, 'A'(ctive) if processing, 'C'ompleted, default 'N' -- NOT NULL
CreateTime datetime -- default GETDATE() -- NOT NULL
Msg varchar(255) -- NULLable
Your message types are what you'd expect - messages that conform to a contract between the process(es) inserting and the process(es) reading, structured with XML or your other choice of representation (JSON would be handy in some cases, for instance).
Then 0-to-n processes can be inserting, and 0-to-n processes can be reading and processing the messages, Each reading process typically handles a single message type. Multiple instances of a process type can be running for load-balancing.
The reader pulls one message and changes the state to "A"ctive while it works on it. When it's done it changes the state to "C"omplete. It can delete the message or not depending on whether you want to keep the audit trail. Messages of State = 'N' are pulled in MsgType/Timestamp order, so there's an index on MsgType + State + CreateTime.
Variations:
State for "E"rror.
Column for Reader process code.
Timestamps for state transitions.
This has provided a nice, scalable, visible, simple mechanism for doing a number of things like you are describing. If you have a basic understanding of databases, it's pretty foolproof and extensible.
Code from comments:
CREATE PROCEDURE GetMessage @MsgType VARCHAR(8) )
AS
DECLARE @MsgId INT
BEGIN TRAN
SELECT TOP 1 @MsgId = MsgId
FROM MsgQueue
WHERE MessageType = @pMessageType AND State = 'N'
ORDER BY CreateTime
IF @MsgId IS NOT NULL
BEGIN
UPDATE MsgQueue
SET State = 'A'
WHERE MsgId = @MsgId
SELECT MsgId, Msg
FROM MsgQueue
WHERE MsgId = @MsgId
END
ELSE
BEGIN
SELECT MsgId = NULL, Msg = NULL
END
COMMIT TRAN