I need to generate a plot with equal aspect in both axis and a colorbar to the right. I've tried setting aspect='auto'
, aspect=1
, and aspect='equal'
with no good results. See below for examples and the MWE.
Using aspect='auto'
the colorbars are of the correct height but the plots are distorted:
Using aspect=1
or aspect='equal'
the plots are square (equal aspect in both axis) but the colorbars are distorted:
In both plots the colorbars are positioned too far to the right for some reason. How can I get a square plot with colorbars of matching heights?
MWE
import numpy as np
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
def col_plot(params):
gs, i, data = params
xarr, yarr, zarr = zip(*data)[0], zip(*data)[1], zip(*data)[2]
xmin, xmax = min(xarr), max(xarr)
ymin, ymax = min(yarr), max(yarr)
#plt.subplot(gs[i], aspect='auto')
plt.subplot(gs[i], aspect=1)
#plt.subplot(gs[i], aspect='equal')
plt.xlim(xmin, xmax)
plt.ylim(xmin, xmax)
plt.xlabel('$x axis$', fontsize=20)
plt.ylabel('$y axis$', fontsize=20)
# Scatter plot.
cm = plt.cm.get_cmap('RdYlBu_r')
SC = plt.scatter(xarr, yarr, marker='o', c=zarr, s=60, lw=0.25, cmap=cm,
zorder=3)
# Colorbar.
ax0 = plt.subplot(gs[i + 1])
cbar = plt.colorbar(SC, cax=ax0)
cbar.set_label('$col bar$', fontsize=21, labelpad=-2)
# Generate data.
data0 = np.random.uniform(0., 1., size=(50, 3))
data1 = np.random.uniform(0., 1., size=(50, 3))
# Create the top-level container
fig = plt.figure(figsize=(14, 25))
gs = gridspec.GridSpec(4, 4, width_ratios=[1, 0.05, 1, 0.05])
# Generate plots.
par_lst = [[gs, 0, data0], [gs, 2, data1]]
for pl_params in par_lst:
col_plot(pl_params)
# Output png file.
fig.tight_layout()
plt.savefig('colorbar_aspect.png', dpi=300)
You can use an AxesDivider to do that. I have modified your code a bit to make use of an AxesDivider.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
def col_plot(data):
xarr, yarr, zarr = zip(*data)[0], zip(*data)[1], zip(*data)[2]
xarr = [2*x for x in xarr]
xmin, xmax = min(xarr), max(xarr)
ymin, ymax = min(yarr), max(yarr)
fig = plt.figure()
ax0 = fig.add_subplot(111, aspect='equal')
plt.xlim(xmin, xmax)
plt.ylim(ymin, ymax)
plt.xlabel('$x axis$', fontsize=20)
plt.ylabel('$y axis$', fontsize=20)
# Scatter plot.
cm = plt.cm.get_cmap('RdYlBu_r')
SC = ax0.scatter(xarr, yarr, marker='o', c=zarr, s=60, lw=0.25, cmap=cm,
zorder=3)
the_divider = make_axes_locatable(ax0)
color_axis = the_divider.append_axes("right", size="5%", pad=0.1)
# Colorbar.
cbar = plt.colorbar(SC, cax=color_axis)
cbar.set_label('$col bar$', fontsize=21, labelpad=-2)
# Generate data.
data0 = np.random.uniform(0., 1., size=(20, 3))
col_plot(data0)
And here is the result (I changed your data so it spans a range of [0, 2] in the x-direction for demonstration purposes):