I have a table like this:
id name
1 gfh
2 bob
3 boby
4 hgf
etc.
I am wondering how can I use Levenshtein metric to compare different rows of my 'name' column?
I already know that I can use this to compare columns:
L.distance('Hello, Word!', 'Hallo, World!')
But how about rows?
Here is a way to do it with pandas and numpy:
from numpy import triu, ones
t = """id name
1 gfh
2 bob
3 boby
4 hgf"""
df = pd.read_csv(pd.core.common.StringIO(t), sep='\s{1,}').set_index('id')
print df
name
id
1 gfh
2 bob
3 boby
4 hgf
Create dataframe with list of strings to mesure distance:
dfs = pd.DataFrame([df.name.tolist()] * df.shape[0], index=df.index, columns=df.index)
dfs = dfs.applymap(lambda x: list([x]))
print dfs
id 1 2 3 4
id
1 [gfh] [bob] [boby] [hgf]
2 [gfh] [bob] [boby] [hgf]
3 [gfh] [bob] [boby] [hgf]
4 [gfh] [bob] [boby] [hgf]
Mix lists to form a matrix with all variations and make upper right corner as NaNs:
dfd = dfs + dfs.T
dfd = dfd.mask(triu(ones(dfd.shape)).astype(bool))
print dfd
id 1 2 3 4
id
1 NaN NaN NaN NaN
2 [gfh, bob] NaN NaN NaN
3 [gfh, boby] [bob, boby] NaN NaN
4 [gfh, hgf] [bob, hgf] [boby, hgf] NaN
Measure L.distance
:
dfd.applymap(lambda x: L.distance(x[0], x[1]))