I have a python pandas dataframe "df" as below -
NAME SETID VENDOR_ID vendor_created_date
0 Vendor1 SD 93 2002-11-22 11:04:33
1 Vendor2 SD 94 2003-08-09 11:40:59
2 Service1 SD 95 2003-10-31 10:29:21
3 Vendor3 SD 01 NaT
4 Vendor4 SD 02 NaT
The vendor_created_date
is of the format datetime64[ns]
.
Now I want to create a new field called fomatted_date
where the vendor_created_date
field values should be in the format MON-YYYY
& I want to delete the rows with NaT
in the date field.
Can you please give me directions?
is this the format you wanted?
Basically we can drop the NaN
rows first and then call apply
and use datetime.strftime
to apply a new format:
In [24]:
df = df.dropna()
df['fomatted_date'] = df['vendor_created_date'].apply(lambda x: dt.datetime.strftime(x,'%b-%Y'))
df
Out[24]:
NAME SETID VENDOR_ID vendor_created_date fomatted_date
Index
0 Vendor1 SD 93 2002-11-22 11:04:33 Nov-2002
1 Vendor2 SD 94 2003-08-09 11:40:59 Aug-2003
2 Service1 SD 95 2003-10-31 10:29:21 Oct-2003