Search code examples
pythonarraysnumpyscalingmulti-dimensional-scaling

Numpy scale 3D array


I'm trying to scale a 3D array to size 64x64x64 (from a larger, non cube size), keeping aspect ratio.

I've done the same thing in a 2D array like this:

pad = Input.size[1]-Input.size[0]
padLeft = math.ceil(pad/2)
padRight = math.floor(pad/2)

if(pad > 0):
    paddedInput = np.pad(Input, ((0,0), (padLeft,padRight)), 'constant', constant_values=(0,0))
else:
    paddedInput = np.pad(Input, ((math.fabs(padLeft),math.fabs(padRight)), (0,0)), 'constant', constant_values=(0,0))

Output = misc.imresize(paddedInput,(InputHeight,InputHeight))

Is there a way to achieve the same thing in N (=3) dimensions?

Edit: My attempt at conversion to 3D:

pad = np.zeros((3,1))
pad[0,0] = max(Input.shape) - Input.shape[0]
pad[1,0] = max(Input.shape) - Input.shape[1]
pad[2,0] = max(Input.shape) - Input.shape[2]

paddedInput = np.zeros((max(Input.shape),max(Input.shape),max(Input.shape)))
print(paddedInput.shape)

for dimension in range(0,3):
    padLeft = math.ceil(pad[dimension,0]/2)
    padRight = math.floor(pad[dimension,0]/2)
    if((padLeft > 0) or (padRight > 0)):
        if dimension == 0:
            paddedInput = np.pad(Input, ((padLeft,padRight),(0,0),(0,0)), 'constant', constant_values=0)
        elif dimension == 1:
            paddedInput = np.pad(paddedInput, ((0,0), (padLeft,padRight),(0,0)), 'constant', constant_values=0)
        elif dimension == 2:
            paddedInput = np.pad(paddedInput, ((0,0),(0,0), (padLeft,padRight)), 'constant', constant_values=0)
print(paddedInput.shape)

This runs but the dimensions that get padded are padded with double the amount they need to be...


Solution

  • The answer is to use pad and then numpy.ndarray.resize() :

    pad = np.zeros((3,1))
    pad[0,0] = max(Input.shape) - Input.shape[0]
    pad[1,0] = max(Input.shape) - Input.shape[1]
    pad[2,0] = max(Input.shape) - Input.shape[2]
    
    paddedInput = np.zeros((max(Input.shape),max(Input.shape),max(Input.shape)))
    
    paddedInput = np.pad(Input, ((int(math.ceil(pad[0,0]/2)),
        int(math.floor(pad[0,0]/2))),(int(math.ceil(pad[1,0]/2)),
        int(math.floor(pad[1,0]/2))),(int(math.ceil(pad[2,0]/2)),
        int(math.floor(pad[2,0]/2)))), 'constant', constant_values=0)
    
    paddedInput.resize((64,64,64))
    

    Doing the pad all on one line fixes any errors there were.