I wrote a neural network and made a small application with things eating other things.
But I don't really know, how to make the thing genetic.
Currently I'm recording all the inputs and outputs from every individual every frame.
At the end of an generation, I then teach every knew individual the data from the top 10 best fitting individuals from prevous generations.
But the problem is, that the recorded data from a a pool of top 10 individuals at 100 generations, is about 50MB large. When I now start a new generation with 20 individuals I have to teach them 20x50MB. This process takes longer than 3 minutes, and I am not sure if this is what I am supposed to do in genetic neural networks. My approach works kind of good actually. Only the inefficiency bugs me. (Of course I know, I could just reduce the population.)
And I could't find me a solution to what I have to crossover and what to mutate. Crossovering and mutating biases and weights is nonsense, isn't it? It only would break the network, would't it? I saw examples doing just this. Mutating the weight vector. But I just can't see, how this would make the network progress reaching it's desired outputs.
Can somebody show me how the network would become better at what it is doing by randomly switching and mutating weights and connections? Would't it be the same, just randomly generating networks and hoping they start doing what they are supposed to do?
Are there other algorithms for genetic neural networks?
Thank you.
Typically, genetic algorithms for neural networks are used as an alternative to training with back-propagation. So there is no training phase (trying to combine various kinds of supervised training with evolution is an interesting idea, but isn't done commonly enough for there to be any standard methods that I know of).
In this context, crossover and mutation of weights and biases makes sense. It provides variation in the population. A lot of the resulting neural networks (especially early on) won't do much of anything interesting, but some will be better. As you keep selecting these better networks, you will continue to get better offspring. Eventually (assuming your task is reasonable and such) you'll have neural networks that are really good at what you want them to do. This is substantially better than random search, because evolution will explore the search space of potential neural networks in a much more intelligent manner.
So yes, just about any genetic neural network algorithm will involve mutating the weights, and perhaps crossing them over as well. Some, such as NEAT, also evolve the topology of the neural network and so allow mutations and crossovers that add or remove nodes and connections between nodes.