Some time ago, I've asked how to map back and forth from godel numbers to terms of a context-free language. While the answer solved the issue specificaly, I'm having trouble in actually programming it generically. So, this question is more generic: given a recursive algebraic data type with terminals, sums and products - such as
data Term = Prod Term Term | SumL Term | SumR Term | AtomA | AtomB
what is an algorithm that will map a term of this type to its godel number, and its inverse?
Edit: for example:
data Foo = A | B Foo | C Foo deriving Show
to :: Foo -> Int
to A = 1
to (B x) = to x * 2
to (C x) = to x * 2 + 1
from :: Int -> Foo
from 1 = A
from n = case mod n 2 of
0 -> B (from (div n 2))
1 -> C (from (div n 2))
Here, to
and from
do what I want for Foo
. I'm just asking for a systematic way to derive those functions for any datatype.
In order to avoid dealing with a particular Goedel numbering, let's define a class that'll abstract the necessary operations (with some imports we'll need later):
{-# LANGUAGE TypeOperators, DefaultSignatures, FlexibleContexts, DeriveGeneric #-}
import Control.Applicative
import GHC.Generics
import Test.QuickCheck
import Test.QuickCheck.Gen
class GodelNum a where
fromInt :: Integer -> a
toInt :: a -> Maybe Integer
encode :: [a] -> a
decode :: a -> [a]
So we can inject natural numbers and encode sequences. Let's further create a canonical instance of this class that'll use throughout the code, which does no real Goedel encoding, just constructs a tree of terms.
data TermNum = Value Integer | Complex [TermNum]
deriving (Show)
instance GodelNum TermNum where
fromInt = Value
toInt (Value x) = Just x
toInt _ = Nothing
encode = Complex
decode (Complex xs) = xs
decode _ = []
For real encoding we'd use another implementation that'd use just one Integer
, something like newtype SomeGoedelNumbering = SGN Integer
.
Let's further create a class for types that we can encode/decode:
class GNum a where
gto :: (GodelNum g) => a -> g
gfrom :: (GodelNum g) => g -> Maybe a
default gto :: (Generic a, GodelNum g, GGNum (Rep a)) => a -> g
gto = ggto . from
default gfrom :: (Generic a, GodelNum g, GGNum (Rep a)) => g -> Maybe a
gfrom = liftA to . ggfrom
The last four lines define a generic implementation of gto
and gfrom
using GHC Generics and DefaultSignatures
. The class GGNum
that they use is a helper class which we'll use to define encoding for the atomic ADT operations - products, sums, etc.:
class GGNum f where
ggto :: (GodelNum g) => f a -> g
ggfrom :: (GodelNum g) => g -> Maybe (f a)
-- no-arg constructors
instance GGNum U1 where
ggto U1 = encode []
ggfrom _ = Just U1
-- products
instance (GGNum a, GGNum b) => GGNum (a :*: b) where
ggto (a :*: b) = encode [ggto a, ggto b]
ggfrom e | [x, y] <- decode e = liftA2 (:*:) (ggfrom x) (ggfrom y)
| otherwise = Nothing
-- sums
instance (GGNum a, GGNum b) => GGNum (a :+: b) where
ggto (L1 x) = encode [fromInt 0, ggto x]
ggto (R1 y) = encode [fromInt 1, ggto y]
ggfrom e | [n, x] <- decode e = case toInt n of
Just 0 -> L1 <$> ggfrom x
Just 1 -> R1 <$> ggfrom x
_ -> Nothing
-- metadata
instance (GGNum a) => GGNum (M1 i c a) where
ggto (M1 x) = ggto x
ggfrom e = M1 <$> ggfrom e
-- constants and recursion of kind *
instance (GNum a) => GGNum (K1 i a) where
ggto (K1 x) = gto x
ggfrom e = K1 <$> gfrom e
Having that, we can then define a data type like yours and just declare its GNum
instance, everything else will be automatically derived.
data Term = Prod Term Term | SumL Term | SumR Term | AtomA | AtomB
deriving (Eq, Show, Generic)
instance GNum Term where
And just to be sure we've done everything right, let's use QuickCheck to verify that our gfrom
is an inverse of gto
:
instance Arbitrary Term where
arbitrary = oneof [ return AtomA
, return AtomB
, SumL <$> arbitrary
, SumR <$> arbitrary
, Prod <$> arbitrary <*> arbitrary
]
prop_enc_dec :: Term -> Property
prop_enc_dec x = Just x === gfrom (gto x :: TermNum)
main :: IO ()
main = quickCheck prop_enc_dec
Notes: