Search code examples
pythonnetcdfcdo-climate

Combining a large amount of netCDF files


I have a large folder of netCDF (.nc) files each one with a similar name. The data files contain variables of time, longitude, latitude, and monthly precipitation. The goal is to get the average monthly precipitation over X amount of years for each month. So in the end I would have 12 values representing the average monthly precipitation over X amount of years for each lat and long. Each file is the same location over many years. Each file starts with the same name and ends in a “date.sub.nc” for example:

'data1.somthing.somthing1.avg_2d_Ind_Nx.200109.SUB.nc'
'data1.somthing.somthing1.avg_2d_Ind_Nx.200509.SUB.nc'
'data2.somthing.somthing1.avg_2d_Ind_Nx.201104.SUB.nc'
'data2.somthing.somthing1.avg_2d_Ind_Nx.201004.SUB.nc'
'data2.somthing.somthing1.avg_2d_Ind_Nx.201003.SUB.nc'
'data2.somthing.somthing1.avg_2d_Ind_Nx.201103.SUB.nc'
'data1.somthing.somthing1.avg_2d_Ind_Nx.201203.SUB.nc'

The ending is YearMonth.SUB.nc What I have so far is:

array=[]
f = nc.MFDataset('data*.nc')
precp = f.variables['prectot']
time = f.variables['time']
array = f.variables['time','longitude','latitude','prectot'] 

I get a KeyError: ('time', 'longitude', 'latitude', 'prectot'). Is there a way to combine all this data so I am able to manipulate it?


Solution

  • As @CharlieZender mentioned, ncra is the way to go here and I'll provide some more details on integrating that function into a Python script. (PS - you can install NCO easily with Homebrew, e.g. http://alejandrosoto.net/blog/2014/01/22/setting-up-my-mac-for-scientific-research/)

    import subprocess
    import netCDF4
    import glob
    import numpy as np
    
    for month in range(1,13):
        # Gather all the files for this month
        month_files = glob.glob('/path/to/files/*{0:0>2d}.SUB.nc'.format(month))
    
    
        # Using NCO functions ---------------
        avg_file = './precip_avg_{0:0>2d}.nc'.format(month)
    
        # Concatenate the files using ncrcat
        subprocess.call(['ncrcat'] + month_files + ['-O', avg_file])
    
        # Take the time (record) average using ncra 
        subprocess.call(['ncra', avg_file, '-O', avg_file])
    
        # Read in the monthly precip climatology file and do whatever now
        ncfile = netCDF4.Dataset(avg_file, 'r')
        pr = ncfile.variables['prectot'][:,:,:]
        ....
    
        # Using only Python -------------
        # Initialize an array to store monthly-mean precip for all years
        # let's presume we know the lat and lon dimensions (nlat, nlon)
        nyears = len(month_files)
        pr_arr = np.zeros([nyears,nlat,nlon], dtype='f4')
    
        # Populate pr_arr with each file's monthly-mean precip
        for idx, filename in enumerate(month_files):
            ncfile = netCDF4.Dataset(filename, 'r')
            pr = ncfile.variable['prectot'][:,:,:]  
            pr_arr[idx,:,:] = np.mean(pr, axis=0)
            ncfile.close()
    
        # Take the average along all years for a monthly climatology
        pr_clim = np.mean(pr_arr, axis=0)  # 2D now [lat,lon]