I see an example in boost ipc (inter process communication)
#include <boost/interprocess/shared_memory_object.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <boost/interprocess/sync/scoped_lock.hpp>
#include <iostream>
#include <cstdio>
#include "doc_anonymous_condition_shared_data.hpp"
using namespace boost::interprocess;
int main ()
{
//Erase previous shared memory and schedule erasure on exit
struct shm_remove
{
shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }
} remover;
//Create a shared memory object.
shared_memory_object shm
(create_only //only create
,"MySharedMemory" //name
,read_write //read-write mode
);
try{
//Set size
shm.truncate(sizeof(trace_queue));
//Map the whole shared memory in this process
mapped_region region
(shm //What to map
,read_write //Map it as read-write
);
//Get the address of the mapped region
void * addr = region.get_address();
//Construct the shared structure in memory
trace_queue * data = new (addr) trace_queue;
const int NumMsg = 100;
for(int i = 0; i < NumMsg; ++i){
scoped_lock<interprocess_mutex> lock(data->mutex);
if(data->message_in){
data->cond_full.wait(lock);
}
if(i == (NumMsg-1))
std::sprintf(data->items, "%s", "last message");
else
std::sprintf(data->items, "%s_%d", "my_trace", i);
//Notify to the other process that there is a message
data->cond_empty.notify_one();
//Mark message buffer as full
data->message_in = true;
}
}
catch(interprocess_exception &ex){
std::cout << ex.what() << std::endl;
return 1;
}
return 0;
}
There is no delete
operator in the example. Probably new operator used in memory region place and it can not use with delete
operator. If I need to call destructor, I should simply call directly:
data->~trace_queue();
Am I right?
Yes, you are right as Joachim commented.
However, I'd suggest using managed_shared_memory
which has the find<T>
, find_or_construct<T>
or construct<T>
to make your life easier.
While you're at it, if you need to store many object of the same type, consider using a std::vector
(or boost::container::vector
) of that type, with boost::interprocess::allocator
.