#include <iostream>
struct A {};
struct B : public A {};
template<typename T>
void foo(const T &x) { std::cout << "Called template" << std::endl; }
void foo(const A &a) { std::cout << "Called A" << std::endl; }
int main()
{
foo(A());
foo(B());
return 0;
}
This prints:
Called A
Called template
I was under the impression that a suitable non-template function would always be chosen over a template function. Can someone explain to me the resolution steps that lead to this somewhat surprising result?
I was under the impression that a suitable non-template function would always be chosen over a template function.
This only holds if the template and the non-template are equally good candidates. That's why the non-template is chosen for foo(A())
.
However, in the case of foo(B())
, using the non-template requires a derived-to-base conversion. So the function template is strictly better, and hence it's chosen.
The foo
template instantiates into void foo(const B&)
. Consider what it would look like without templates:
void foo(const B &x) { std::cout << "Called template" << std::endl; }
void foo(const A &a) { std::cout << "Called A" << std::endl; }
I believe you'll agree calling foo(B())
should unambiguously pick the first one. That's exactly why the template is chosen.