I currently has an executable that when running uses all the cores on my server. I want to add another server, and have the jobs split between the two machines, but still each job using all the cores on the machine it is running. If both machines are busy I need the next job to queue until one of the two machines become free.
I thought this might be controlled by python, however I am a novice and not sure which python package would be the best for this problem.
I liked the "heapq" package for the queuing of the jobs, however it looked like it is designed for a single server use. I then looked into Ipython.parallel, but it seemed more designed for creating a separate smaller job for every core (on either one or more servers).
I saw a huge list of different options here (https://wiki.python.org/moin/ParallelProcessing) but I could do with some guidance as which way to go for a problem like this.
Can anyone suggest a package that may help with this problem, or a different way of approaching it?
Celery does exactly what you want - make it easy to distribute a task queue across multiple (many) machines.
See the Celery tutorial to get started.
Alternatively, IPython has its own multiprocessing library built in, based on ZeroMQ; see the introduction. I have not used this before, but it looks pretty straight-forward.