I want to develop an app to match your tinnitus frequency : A frequency is played and the user decrease or increase the freqency by pressing a plus or minus button. (see part of the codes, based on some coding from stackoverflow thx :-))
public static short[] BufferSamples = new short[44100 * 1 * 2];
private SourceVoice sourceVoice;
private AudioBuffer buffer;
private int Tfreq;
public MatchTinn()
{
InitializeComponent();
Loaded += MatchTinn_Loaded;
TFreq = 5000;
}
private void MatchTinn_Loaded(object sender, RoutedEventArgs e)
{
var dataStream = DataStream.Create(BufferSamples, true, true);
buffer = new AudioBuffer
{
LoopCount = AudioBuffer.LoopInfinite,
Stream = dataStream,
AudioBytes = (int)dataStream.Length,
Flags = BufferFlags.EndOfStream
};
FillBuffer(BufferSamples, 44100, Tfreq);
var waveFormat = new WaveFormat();
XAudio2 xaudio = new XAudio2();
MasteringVoice masteringVoice = new MasteringVoice(xaudio);
sourceVoice = new SourceVoice(xaudio, waveFormat, true);
// Submit the buffer
sourceVoice.SubmitSourceBuffer(buffer, null);
}
private void FillBuffer(short[] buffer, int sampleRate, int frequency)
{
if (sourceVoice != null)
{
sourceVoice.FlushSourceBuffers();
}
double totalTime = 0;
for (int i = 0; i < buffer.Length - 1; i += 2)
{
double time = (double)totalTime / (double)sampleRate;
short currentSample = (short)(Math.Sin(2 * Math.PI * frequency * time) * (double)short.MaxValue);
buffer[i] = currentSample;
buffer[i + 1] = currentSample;
totalTime++;
}
private void m1_OnTap(object sender, GestureEventArgs e)
{
Tfreq = Tfreq - 1;
if (Tfreq < 0)
{
Tfreq = 0;
}
FillBuffer(BufferSamples, 44100, Tfreq);
}
private void p1_OnTap(object sender, GestureEventArgs e)
{
Tfreq = Tfreq + 1;
if (Tfreq > 16000)
{
Tfreq = 16000;
}
FillBuffer(BufferSamples, 44100, Tfreq);
}
Playing the frequency is fine, but when the user presses a button you here a clicking sound when the frequency is updated. Do you have any idea what makes the sound and how i can get rid of it? Thanks.
When you change the frequency, you're causing a discontinuity in the waveform that manifests as a click. Instead of making your signal calculations against absolute time, you should keep track of the phase of your sine calculation (e.g. a value from 0 to 2*pi), and figure out how much you need to add to your phase (subtracting 2*pi every time you exceed 2*pi) for the next sample when playing a specific frequency. This way, when you change frequency, the phase that you supply as a parameter to Math.Sin
doesn't change abruptly causing a click.