I'm trying to create a function w(t)
from some data. I do this by looping through the data, creating a function, and adding this to w(t)
. I'm running into infinite recursion problems that arise because I don't know when R is evaluating variables. The error message I get is:
Error: evaluation nested too deeply: infinite recursion / options(expressions=)? Error during wrapup: evaluation nested too deeply: infinite recursion / options(expressions=)?
Below is an example of a Kernalised Perceptron. I generate some linearly separable data and try to fit it. The functional addition occurs in the function kern.perceptron
where I:
kernel <- FUN(x, ...)
. From the call this translates to creating a function function(t) (x %*% t)^3
where x should be evaluated. (I think this is where I may be falling down).wHat
How can I correctly update the function such that wHat(t) = wHat(t) + kernel(t)
?
prepend.bias <- function(X){
cbind(rep(1, nrow(X)), X)
}
pred.perc <- function(X, w, add.bias=FALSE){
X <- as.matrix(X)
if (add.bias) X <- prepend.bias(X)
sign(X %*% w)
}
polyKernel <- function(x, d=2){
# Function that creates a kernel function for a given data point
# Expects data point as row matrix
function(t){
# expects t as vector or col matrix
t <- as.matrix(t)
(x %*% t)^d
}
}
pred.kperc <- function(X, w, add.bias=FALSE){
X <- as.matrix(X)
if (add.bias) X <- prepend.bias(X)
as.matrix(sign(apply(X, 1, w)))
}
kern.perceptron <- function(X, Y, max.epoch=1, verbose=FALSE,
FUN=polyKernel, ...) {
wHat <- function(t) 0
alpha <- numeric(0)
X <- prepend.bias(X)
bestmistakes <- Inf
n <- nrow(X)
for (epoch in 1:max.epoch) {
improved <- FALSE
mistakes <- 0
for (i in 1:n) {
x <- X[i,,drop=F]
yHat <- pred.kperc(x, wHat)
if (Y[i] != yHat) {
alpha <- c(alpha, Y[i])
wPrev <- wHat
kernel <- FUN(x, ...)
if (Y[i] == -1){
wHat <- function(t) wPrev(t) - kernel(t)
} else{
wHat <- function(t) wPrev(t) + kernel(t)
}
mistakes <- mistakes + 1
}
else alpha <- c(alpha, 0)
}
totmistakes <- sum(Y != pred.kperc(X, wHat))
if (totmistakes < bestmistakes){
bestmistakes <- totmistakes
pocket <- wHat
improved <- TRUE
}
if (verbose) {
message(paste("\nEpoch:", epoch, "\nMistakes In Loop:", mistakes,
"\nCurrent Solution Mistakes:", totmistakes,
"\nBest Solution Mistakes:", bestmistakes))
if (!improved)
message(paste("WARNING: Epoch", epoch, "No improvement"))
}
}
return(pocket)
}
set.seed(10230)
w <- c(0.3, 0.9, -2)
X <- gendata(100, 2)
Y <- pred.perc(X, w, TRUE)
wHat <- kern.perceptron(X, Y, 10, TRUE, polyKernel, d=3)
I think your getting a stack overflow because your createing a more and more deeply nested function wHat
. You could keep a registry of kernel functions in a closure as in:
LL <- local({
#initialize list of kernel functions in the closeure
funlist = list()
#a logical vector indicating whether or not to add or subtract the kernal functio
.sign = logical(zero)
#register a kernal function and it's sign
register <- function(fun,sign,x){
funlist<<-c(funlist,list(fun))
add<<-c(add,sign)
}
# wHat uses k in the closure without having to pass it as an argument
wHat <- function(t){
out = 0
for(i in seq(length(.sign))
if (.sign[i]){
out <- out + funlist[[i]](t)
} else{
out <- out - funlist[[i]](t)
}
}
list(wHat,register)
})
wHat <- LL$wHat
register <- LL$register
then to register a kernal functions you call
register(KernelFun,sign)
and when you call
wHat(t)
you get the sum of the kernel functions in the registery, which I think is what you want.
Incidentally, you could do this without closures too...