I want to simulate protanopia view (one of the partial colorblind) with C++ OpenCV using webcam to simulate it. Here the code:
#include "opencv2/opencv.hpp"
using namespace cv;
int main(int, char**)
{
int i = 0;
Mat im, im2, kernel3;
Mat rgb2lms = (Mat_<double>(3, 3) << 17.8824, 43.5161, 4.11935, 3.45565, 27.1554, 3.86714, 0.0299566, 0.184309, 1.46709); //filter1
Mat lms2lmsp = (Mat_<double>(3, 3) << 0, 2.02344, -2.52581, 0, 1, 0, 0, 0, 1); //filter2
Mat Result, Result2, op1, op2, op3, op4, op5, op6;
Vec3b zay, zay2;
kernel3 = rgb2lms.inv(DECOMP_LU); //filter 3
cv::Mat mat(3, 1, CV_64FC1); //create MAT for matrices multiplication
Mat frame;
VideoCapture cap(0); // open the default camera
if (!cap.isOpened()) // check if we succeeded
return -1;
namedWindow("edges", 1);
for (;;)
{
cap.read(frame); // get a new frame from camera
if (frame.empty()) continue;
const int nChannels = frame.channels();
if (i == 0){
Result.create(frame.size(), frame.type());
}
//Result2.create(frame.size(), frame.type());
cvtColor(frame, im2, CV_BGR2RGB); //convert to RGB
for (int i = 0; i < im2.rows; i++)
{
for (int j = 0; j < im2.cols; j++)
{
for (int k = 0; k < nChannels; k++)
{
zay(k) = im2.at<Vec3b>(i, j)[k]; //acces pixel value and put into 3x1 vector zay
//put the value in to mat so i can multiplied with easy
mat.at <double>(0, 0) = zay[0];
mat.at <double>(1, 0) = zay[1];
mat.at <double>(2, 0) = zay[2];
op1 = rgb2lms*mat; //apply filter1
op2 = lms2lmsp*op1; //apply filter2
op3 = kernel3*op2; //apply filter3
for (int k = 0; k < nChannels; k++)
{
Result.at<Vec3b>(i, j)[k] = op3.at<double>(k, 0); //put the result from vector to mat
}
}
}
cvtColor(Result, Result2, CV_RGB2BGR); //convert back to BGR
imshow("hasil", Result2);
if (waitKey(30) >= 0) break;
i++;
}
// the camera will be deinitialized automatically in VideoCapture destructor
return 0;
}
This code is run, but the image video output is very slow (lagging). i'm very new using C++. My Question:
Thanks
Filter2D is not the appropriate function for your task. It applies a convolution filter on each channel of the image, while what you want is a linear tranformation matrix applied on each rgb pixel.
The function you are looking for is transform.
First, for better performance, merge your three transformations into a single global transformation matrix:
Mat global_kernel = kernel3*lms2lmsp*rgb2lms;
Then, instead of your for loop, use:
transform(im2, Result, global_kernel);
If you still want to save a few milliseconds, you may also remove the cvtColor function calls by applying your transformation directly from bgr color space. Simply switch the columns of your rgb2lms matrix:
Mat bgr2lms = (Mat_<double>(3, 3) << 4.11935, 43.5161, 17.8824, 3.86714, 27.1554, 3.45565, 1.46709, 0.184309, 0.0299566);