I used AMD's two-stage reduction example to compute the sum of all numbers from 0 to 65 536 using floating point precision. Unfortunately, the result is not correct. However, when I modify my code, so that I compute the sum of 65 536 smaller numbers (for example 1), the result is correct.
I couldn't find any error in the code. Is it possible that I am getting wrong results, because of the float type? If this is the case, what is the best approach to solve the issue?
There is probably no error in the coding of your kernel or host application. The issue is with the single-precision floating point.
The correct sum is: 65537 * 32768 = 2147516416, and it takes 31 bits to represent it in binary (10000000000000001000000000000000). 32-bit floats can only hold integers accurately up to 2^24.
"Any integer with absolute value less than [2^24] can be exactly represented in the single precision format" "Floating Point" article, wikipedia
This is why you are getting the correct sum when it is less than or equal to 2^24. If you are doing a complete sum using single-precision, you will eventually lose accuracy no matter which device you are executing the kernel on. There are a few things you can do to get the correct answer: