As far as I know , making constant functions in a class is useful for read/write compiler optimizations.
A constant function within a class means that the class members will remain constant during the execution of the function. However, you can bypass this by const casting the implicit parameter (ofc this is a very bad practice).
My questions is as follows :
What pitfalls can the following code cause (especially in terms of performance unrelated to thread synchronization) ?
int myClass::getSomething() const
{
myClass* writableThis = const_cast<myClass*>(this);
writableThis->m_nMemberInt++;
...
return m_nSomeOtherUnchangedMember;
}
Another related question :
Is the behavior compiler/platform/os specific ?
I would also very much appreciate if someone could explain the magic under the hood when such a code is compiled/executed (I'm speculating that the CPU is making out-of-order optimizations based on the fact that the function is const , and not respecting this during actual execution should have some side effects).
EDIT :
Thank you for clarifying this for me. After further research all the received answers are correct but I can accept only one :).
Regarding the const qualifier being used solely for syntax corectness , I believe this answer is both right and wrong, the correct way to state this (imho) would be that it is used mostly for syntax corectness (in a very limited number of scenarios it can produce different / better code ). References : SO Related question , related article
The const_cast<T>(this)
trick is potentially unsafe, because the user of your member function may run into undefined behavior without doing anything wrong on their side.
The problem is that casting away const-ness is allowed only when you start with a non-const object. If your object is constant, the function that casts away its const-ness and uses the resultant pointer to change object's state triggers undefined behavior:
struct Test {
int n;
Test() : n(0) {}
void potentiallyUndefinedBehavior() const {
Test *wrong = const_cast<Test*>(this);
wrong->n++;
}
};
int main() {
Test t1;
// This call is OK, because t1 is non-const
t1.potentiallyUndefinedBehavior();
const Test t2;
// This triggers undefined behavior, because t2 is const
t2.potentiallyUndefinedBehavior();
return 0;
}
The trick with const_cast<T>(this)
has been invented for caching values inside member functions with const
qualifier. However, it is no longer useful, because C++ added a special keyword for this sort of things: by marking a member mutable
you make that member writable inside const
-qualified methods:
struct Test {
mutable int n;
Test() : n(0) {}
void wellDefinedBehavior() const {
n++;
}
};
Now the const
member function will not trigger undefined behavior regardless of the context.