Search code examples
pandasappendalphabetical

Can you prevent automatic alphabetical order of df.append()?


I am trying to append data to a log where the order of columns isn't in alphabetical order but makes logical sense, ex.

Org_Goals_1  Calc_Goals_1  Diff_Goals_1   Org_Goals_2 Calc_Goals_2 Diff_Goals_2 

I am running through several calculations based on different variables and logging the results through appending a dictionary of the values after each run. Is there a way to prevent the df.append() function to order the columns alphabetically?


Solution

  • Seems you have to reorder the columns after the append operation:

    In [25]:
    # assign the appended dfs to merged
    merged = df1.append(df2)
    # create a list of the columns in the order you desire
    cols = list(df1) + list(df2)
    # assign directly
    merged.columns = cols
    # column order is now as desired
    merged.columns
    Out[25]:
    Index(['Org_Goals_1', 'Calc_Goals_1', 'Diff_Goals_1', 'Org_Goals_2', 'Calc_Goals_2', 'Diff_Goals_2'], dtype='object')
    

    example:

    In [26]:
    
    df1 = pd.DataFrame(columns=['Org_Goals_1','Calc_Goals_1','Diff_Goals_1'], data = randn(5,3))
    df2 = pd.DataFrame(columns=['Org_Goals_2','Calc_Goals_2','Diff_Goals_2'], data=randn(5,3))
    merged = df1.append(df2)
    cols = list(df1) + list(df2)
    merged.columns = cols
    merged
    Out[26]:
       Org_Goals_1  Calc_Goals_1  Diff_Goals_1  Org_Goals_2  Calc_Goals_2  \
    0     0.028935           NaN     -0.687143          NaN      1.528579   
    1     0.943432           NaN     -2.055357          NaN     -0.720132   
    2     0.035234           NaN      0.020756          NaN      1.556319   
    3     1.447863           NaN      0.847496          NaN     -1.458852   
    4     0.132337           NaN     -0.255578          NaN     -0.222660   
    0          NaN      0.131085           NaN     0.850022           NaN   
    1          NaN     -1.942110           NaN     0.672965           NaN   
    2          NaN      0.944052           NaN     1.274509           NaN   
    3          NaN     -1.796448           NaN     0.130338           NaN   
    4          NaN      0.961545           NaN    -0.741825           NaN   
    
       Diff_Goals_2  
    0           NaN  
    1           NaN  
    2           NaN  
    3           NaN  
    4           NaN  
    0      0.727619  
    1      0.022209  
    2     -0.350757  
    3      1.116637  
    4      1.947526  
    

    The same alpha sorting of the columns happens with concat also so it looks like you have to reorder after appending.

    EDIT

    An alternative is to use join:

    In [32]:
    
    df1.join(df2)
    Out[32]:
       Org_Goals_1  Calc_Goals_1  Diff_Goals_1  Org_Goals_2  Calc_Goals_2  \
    0     0.163745      1.608398      0.876040     0.651063      0.371263   
    1    -1.762973     -0.471050     -0.206376     1.323191      0.623045   
    2     0.166269      1.021835     -0.119982     1.005159     -0.831738   
    3    -0.400197      0.567782     -1.581803     0.417112      0.188023   
    4    -1.443269     -0.001080      0.804195     0.480510     -0.660761   
    
       Diff_Goals_2  
    0     -2.723280  
    1      2.463258  
    2      0.147251  
    3      2.328377  
    4     -0.248114