I have a set of points that represent the vertices (x, y) of a polygon.
points= [(421640.3639270504, 4596366.353552659), (421635.79361391126, 4596369.054192241), (421632.6774913164, 4596371.131607305), (421629.14588570886, 4596374.870954419), (421625.6142801013, 4596377.779335507), (421624.99105558236, 4596382.14190714), (421630.1845932406, 4596388.062540068), (421633.3007158355, 4596388.270281575), (421637.87102897465, 4596391.8018871825), (421642.4413421138, 4596394.918009778), (421646.5961722403, 4596399.903805929), (421649.71229483513, 4596403.850894549), (421653.8940752105, 4596409.600842565), (421654.69809098693, 4596410.706364258), (421657.60647207545, 4596411.329588776), (421660.514853164, 4596409.875398233), (421661.3458191893, 4596406.136051118), (421661.5535606956, 4596403.22767003), (421658.85292111343, 4596400.94251346), (421656.5677645438, 4596399.696064423), (421655.52905701223, 4596396.164458815), (421652.82841743, 4596394.502526765), (421648.46584579715, 4596391.8018871825), (421646.38843073393, 4596388.270281575), (421645.55746470863, 4596386.400608018), (421647.21939675923, 4596384.115451449), (421649.5045533288, 4596382.661260904), (421650.7510023668, 4596378.714172284), (421647.8426212782, 4596375.8057911955), (421644.9342401897, 4596372.897410107), (421643.6877911517, 4596370.404512031), (421640.3639270504, 4596366.353552659)]
I need to find the Smallest Enclosing Circle (area, x and y of center, and radius)
I am using the python code derived from this page: Smallest enclosing circle of Nayuki
when I run the code the results change every time, for example:
>>> make_circle(points)
(421643.0645666326, 4596393.82736687, 23.70763190712525)
>>> make_circle(points)
(421647.8426212782, 4596375.8057911955, 0.0)
>>> make_circle(points)
(421648.9851995629, 4596388.841570718, 24.083963460031157)
where return is x, y (of the center of the circle), and radius
using a commercial software (i.e. ArcGiS) whin the some set of points the correct result is:
421646.74552, 4596389.82475, 24.323246
code used:
#
# Smallest enclosing circle
#
# Copyright (c) 2014 Project Nayuki
# https://www.nayuki.io/page/smallest-enclosing-circle
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program (see COPYING.txt).
# If not, see <http://www.gnu.org/licenses/>.
#
import math, random
# Data conventions: A point is a pair of floats (x, y). A circle is a triple of floats (center x, center y, radius).
#
# Returns the smallest circle that encloses all the given points. Runs in expected O(n) time, randomized.
# Input: A sequence of pairs of floats or ints, e.g. [(0,5), (3.1,-2.7)].
# Output: A triple of floats representing a circle.
# Note: If 0 points are given, None is returned. If 1 point is given, a circle of radius 0 is returned.
#
def make_circle(points):
# Convert to float and randomize order
shuffled = [(float(p[0]), float(p[1])) for p in points]
random.shuffle(shuffled)
# Progressively add points to circle or recompute circle
c = None
for (i, p) in enumerate(shuffled):
if c is None or not _is_in_circle(c, p):
c = _make_circle_one_point(shuffled[0 : i + 1], p)
return c
# One boundary point known
def _make_circle_one_point(points, p):
c = (p[0], p[1], 0.0)
for (i, q) in enumerate(points):
if not _is_in_circle(c, q):
if c[2] == 0.0:
c = _make_diameter(p, q)
else:
c = _make_circle_two_points(points[0 : i + 1], p, q)
return c
# Two boundary points known
def _make_circle_two_points(points, p, q):
diameter = _make_diameter(p, q)
if all(_is_in_circle(diameter, r) for r in points):
return diameter
left = None
right = None
for r in points:
cross = _cross_product(p[0], p[1], q[0], q[1], r[0], r[1])
c = _make_circumcircle(p, q, r)
if c is None:
continue
elif cross > 0.0 and (left is None or _cross_product(p[0], p[1], q[0], q[1], c[0], c[1]) > _cross_product(p[0], p[1], q[0], q[1], left[0], left[1])):
left = c
elif cross < 0.0 and (right is None or _cross_product(p[0], p[1], q[0], q[1], c[0], c[1]) < _cross_product(p[0], p[1], q[0], q[1], right[0], right[1])):
right = c
return left if (right is None or (left is not None and left[2] <= right[2])) else right
def _make_circumcircle(p0, p1, p2):
# Mathematical algorithm from Wikipedia: Circumscribed circle
ax = p0[0]; ay = p0[1]
bx = p1[0]; by = p1[1]
cx = p2[0]; cy = p2[1]
d = (ax * (by - cy) + bx * (cy - ay) + cx * (ay - by)) * 2.0
if d == 0.0:
return None
x = ((ax * ax + ay * ay) * (by - cy) + (bx * bx + by * by) * (cy - ay) + (cx * cx + cy * cy) * (ay - by)) / d
y = ((ax * ax + ay * ay) * (cx - bx) + (bx * bx + by * by) * (ax - cx) + (cx * cx + cy * cy) * (bx - ax)) / d
return (x, y, math.hypot(x - ax, y - ay))
def _make_diameter(p0, p1):
return ((p0[0] + p1[0]) / 2.0, (p0[1] + p1[1]) / 2.0, math.hypot(p0[0] - p1[0], p0[1] - p1[1]) / 2.0)
_EPSILON = 1e-12
def _is_in_circle(c, p):
return c is not None and math.hypot(p[0] - c[0], p[1] - c[1]) < c[2] + _EPSILON
# Returns twice the signed area of the triangle defined by (x0, y0), (x1, y1), (x2, y2)
def _cross_product(x0, y0, x1, y1, x2, y2):
return (x1 - x0) * (y2 - y0) - (y1 - y0) * (x2 - x0)
Without understanding anything about your algorithm, I noticed one thing: the ratio between your coordinates and your radius is very large, about 2e5. Maybe, your algorithm is ill conditioned when trying to find a circle around points which are so far away from the origin. Especially in your _make_circumcircle
function, this leads to the subtraction of large numbers, which is usually a bad thing for numerical errors.
Since fitting the radius and the center of the circle with respect to the points should be independent of a translation, you could simply subtract the mean of all points (the center of mass of your cloud of points), do the fitting, and then add the mean back to obtain the final result:
def numerical_stable_circle(points):
pts = np.array(points)
mean_pts = np.mean(pts, 0)
print 'mean of points:', mean_pts
pts -= mean_pts # translate towards origin
result = make_circle(pts)
print 'result without mean:', result
print 'result with mean:', (result[0] + mean_pts[0],
result[1] + mean_pts[1], result[2])
Result:
mean of points: [ 421645.83745955 4596388.99204294]
result without mean: (0.9080813432488977, 0.8327111343034483, 24.323287017466253)
result with mean: (421646.74554089626, 4596389.8247540779, 24.323287017466253)
These numbers do not change a single digit from one run to the next one, and differ from your 'correct result' by only a tiny amount (probably different numerical errors due to a different implementation).