I am trying to apply graph theory methods to an image processing problem. I want to generate an adjacency matrix from an array containing the points I want to graph. I want to generate a complete graph of the points in the array. If I have N points in the array that I need to graph, I will need an NxN matrix. The weights should be the distances between the points, so this is the code that I have:
''' vertexarray is an array where the points that are to be
included in the complete graph are True and all others False.'''
import numpy as np
def array_to_complete_graph(vertexarray):
vertcoords = np.transpose(np.where(vertexarray == True))
cg_array = np.eye(len(vertcoords))
for idx, vals in enumerate(vertcoords):
x_val_1, y_val_1 = vals
for jdx, wals in enumerate(vertcoords):
x_diff = wals[0] - vals[0]
y_diff = wals[1] - vals[1]
cg_array[idx,jdx] = np.sqrt(x_diff**2 + y_diff**2)
return cg_array
This works, of course, but my question is: can this same array be generated without the nested for loops?
Use the function scipy.spatial.distance.cdist()
:
import numpy as np
def array_to_complete_graph(vertexarray):
vertcoords = np.transpose(np.where(vertexarray == True))
cg_array = np.eye(len(vertcoords))
for idx, vals in enumerate(vertcoords):
x_val_1, y_val_1 = vals
for jdx, wals in enumerate(vertcoords):
x_diff = wals[0] - vals[0]
y_diff = wals[1] - vals[1]
cg_array[idx,jdx] = np.sqrt(x_diff**2 + y_diff**2)
return cg_array
arr = np.random.rand(10, 20) > 0.75
from scipy.spatial.distance import cdist
y, x = np.where(arr)
p = np.c_[x, y]
dist = cdist(p, p)
np.allclose(array_to_complete_graph(arr), dist)